Assume that T is a linear transformation. Find the standard matrix of T. T: R3→R2, T (e,) = (1,9), and T (e2) = (-6,2), and T (e3) = (9,- 5), where e,, e2, and ez are the columns of the 3x3 identity matrix. ..... A = (Type an integer or decimal for each matrix element.)
Assume that T is a linear transformation. Find the standard matrix of T. T: R3→R2, T (e,) = (1,9), and T (e2) = (-6,2), and T (e3) = (9,- 5), where e,, e2, and ez are the columns of the 3x3 identity matrix. ..... A = (Type an integer or decimal for each matrix element.)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Educational Content: Understanding Linear Transformations and Standard Matrices
#### Problem Statement:
Assume that \( T \) is a linear transformation. Find the standard matrix of \( T \).
#### Given:
\[ T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 \]
- \( T(\mathbf{e_1}) = (1, 9) \)
- \( T(\mathbf{e_2}) = (-6, 2) \)
- \( T(\mathbf{e_3}) = (9, -5) \)
where \( \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \) are the columns of the \( 3 \times 3 \) identity matrix.
#### Task:
Find the matrix \( A = \begin{bmatrix} \quad \end{bmatrix} \)
*(Type an integer or decimal for each matrix element.)*
#### Explanation:
The transformation \( T \) maps vectors from \( \mathbb{R}^3 \) to \( \mathbb{R}^2 \). The standard matrix \( A \) representing this transformation can be constructed using the images of the standard basis vectors \( \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \) under \( T \).
The columns of matrix \( A \) are the images of these standard basis vectors. Therefore, the standard matrix \( A \) is constructed as follows:
\[
A = \begin{bmatrix}
1 & -6 & 9 \\
9 & 2 & -5 \\
\end{bmatrix}
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F704a64b5-5250-41d0-9c29-5aaf5a50e535%2F3a0ce225-9618-4fae-8e8f-429d91e8010d%2Fwo17qdc_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Educational Content: Understanding Linear Transformations and Standard Matrices
#### Problem Statement:
Assume that \( T \) is a linear transformation. Find the standard matrix of \( T \).
#### Given:
\[ T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 \]
- \( T(\mathbf{e_1}) = (1, 9) \)
- \( T(\mathbf{e_2}) = (-6, 2) \)
- \( T(\mathbf{e_3}) = (9, -5) \)
where \( \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \) are the columns of the \( 3 \times 3 \) identity matrix.
#### Task:
Find the matrix \( A = \begin{bmatrix} \quad \end{bmatrix} \)
*(Type an integer or decimal for each matrix element.)*
#### Explanation:
The transformation \( T \) maps vectors from \( \mathbb{R}^3 \) to \( \mathbb{R}^2 \). The standard matrix \( A \) representing this transformation can be constructed using the images of the standard basis vectors \( \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \) under \( T \).
The columns of matrix \( A \) are the images of these standard basis vectors. Therefore, the standard matrix \( A \) is constructed as follows:
\[
A = \begin{bmatrix}
1 & -6 & 9 \\
9 & 2 & -5 \\
\end{bmatrix}
\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1q
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)