Assume that a population of patients contains 30% of individuals who suffer from a certain fatal syndrome Z, which simultaneously makes it uncomfortable for them to take a life-prolonging drug X. Let Z = 1 and Z = 0 represent, respectively, the presence and absence of the syndrome, Y = 1 and Y = 0 represent death and survival, respectively, and X = 1 and X = 0 represent taking and not taking the drug. Assume that patients not carrying the syndrome, Z = 0, die with probability 0.5 if they take the drug and with probability 0.5 if they do not. Patients carrying the syndrome, Z = 1, on the other hand, die with probability 0.7 if they do not take the drug and with probability 0.3 if they do take the drug. Further, patients having the syndrome are more likely to avoid the drug, with probabilities p(X = 1|Z=0) = 0.9 and P(X = 1|Z = 1) = 0.6 . Based on this model, compute the joint distributions and for all values of x, y, and z. Present the following joint distributions in tables. [Hint: Use the product decomposition.] p(x,y,z) p(x,y) p(x,z) p(y,z)
Contingency Table
A contingency table can be defined as the visual representation of the relationship between two or more categorical variables that can be evaluated and registered. It is a categorical version of the scatterplot, which is used to investigate the linear relationship between two variables. A contingency table is indeed a type of frequency distribution table that displays two variables at the same time.
Binomial Distribution
Binomial is an algebraic expression of the sum or the difference of two terms. Before knowing about binomial distribution, we must know about the binomial theorem.
Assume that a population of patients contains 30% of individuals who suffer from a certain fatal syndrome Z, which simultaneously makes it uncomfortable for them to take a life-prolonging drug X. Let Z = 1 and Z = 0 represent, respectively, the presence and absence of the syndrome, Y = 1 and Y = 0 represent death and survival, respectively, and X = 1 and X = 0 represent taking and not taking the drug. Assume that patients not carrying the syndrome, Z = 0, die with probability 0.5 if they take the drug and with probability 0.5 if they do not. Patients carrying the syndrome, Z = 1, on the other hand, die with probability 0.7 if they do not take the drug and with probability 0.3 if they do take the drug. Further, patients having the syndrome are more likely to avoid the drug, with probabilities p(X = 1|Z=0) = 0.9 and P(X = 1|Z = 1) = 0.6 .
- Based on this model, compute the joint distributions and for all values of x, y, and z. Present the following joint distributions in tables. [Hint: Use the product decomposition.]
- p(x,y,z)
- p(x,y)
- p(x,z)
- p(y,z)
Trending now
This is a popular solution!
Step by step
Solved in 5 steps