As shown in Figure 2, two vehicles approach an intersection with the velocities indicated in the Figure. The mass m, of the car is unknown; the mass m2 of the pickup truck is 1,950 kg. 25.0 m/s The vehicles collide and fuse together, and the combined wreckage slides off the road as shown, with final velocity vę at an angle 0 with respect to the x-axis. 20.0 m/s ----theta = 35.5 (degrees) There are no external forces acting on the system during the collision. Figure 2. a) Using conservation of momentum, calculate the final velocity vę (in m/s) and the mass m, of the car (in kg). p = md Fext · At = Ap Include a labeled Free Body 1 K =-mv Diagram (FBD) showing all momentum vector components. F = HxN b) Calculate the kinetic energies (in J) just before and just after the collision. Is the collision elastic or inelastic, and why? What is the ratio K¢/K¡ of the final to the initial kinetic energy? Wext = F1 · Ax Wext = (K – K,) + (U – U.) %3D c) The fused wreckage now slides over a surface with coefficient of kinetic friction Hk and comes to rest a distance Ax = 150 feet from the point of the collision. Use the Work–Energy Theorem to calculate µg. Note: Part c) is not a two-dimensional problem as in a) It is just a one-
As shown in Figure 2, two vehicles approach an intersection with the velocities indicated in the Figure. The mass m, of the car is unknown; the mass m2 of the pickup truck is 1,950 kg. 25.0 m/s The vehicles collide and fuse together, and the combined wreckage slides off the road as shown, with final velocity vę at an angle 0 with respect to the x-axis. 20.0 m/s ----theta = 35.5 (degrees) There are no external forces acting on the system during the collision. Figure 2. a) Using conservation of momentum, calculate the final velocity vę (in m/s) and the mass m, of the car (in kg). p = md Fext · At = Ap Include a labeled Free Body 1 K =-mv Diagram (FBD) showing all momentum vector components. F = HxN b) Calculate the kinetic energies (in J) just before and just after the collision. Is the collision elastic or inelastic, and why? What is the ratio K¢/K¡ of the final to the initial kinetic energy? Wext = F1 · Ax Wext = (K – K,) + (U – U.) %3D c) The fused wreckage now slides over a surface with coefficient of kinetic friction Hk and comes to rest a distance Ax = 150 feet from the point of the collision. Use the Work–Energy Theorem to calculate µg. Note: Part c) is not a two-dimensional problem as in a) It is just a one-
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
can you show me how to solve a and b?
![As shown in Figure 2, two vehicles
approach an intersection with the velocities
indicated in the Figure. The mass m1 of the car is
unknown; the mass m2 of the pickup truck is
1,950 kg.
25.0 m/s
The vehicles collide and fuse together, and the
combined wreckage slides off the road as shown,
with final velocity vf at an angle 0 with respect to
the x-axis.
20.0 m/s
----theta = 35.5 (degrees)
There are no external forces acting on the system
during the collision.
Figure 2.
p = md
a) Using conservation of momentum, calculate the
final velocity vf (in m/s) and the mass m, of
the car (in kg).
Fext · At = Ap
1
Include a labeled Free Body
Diagram (FBD) showing all momentum vector
K = mv²
components.
Fr = HkN
b) Calculate the kinetic energies (in J) just before
and just after the collision. Is the collision
elastic or inelastic, and why? What is the ratio
Kf/K¡ of the final to the initial kinetic energy?
Wext = F· Ax
Wext = (K – Ko) + (U – U.)
%3D
c) The fused wreckage now slides over a surface with coefficient of kinetic friction
Hk and comes to rest a distance Ax = 150 feet from the point of the collision. Use
the Work-Energy Theorem to calculate µg-
Note: Part c) is not a two-dimensional problem, as in a). It is just a one
dimensional slide on a flat surface with friction.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F65e9754d-e7bf-4951-a913-18b478a6d2d4%2F21cb1cd5-5e28-445b-a230-b46c9a86bfd6%2Ffabb84_processed.png&w=3840&q=75)
Transcribed Image Text:As shown in Figure 2, two vehicles
approach an intersection with the velocities
indicated in the Figure. The mass m1 of the car is
unknown; the mass m2 of the pickup truck is
1,950 kg.
25.0 m/s
The vehicles collide and fuse together, and the
combined wreckage slides off the road as shown,
with final velocity vf at an angle 0 with respect to
the x-axis.
20.0 m/s
----theta = 35.5 (degrees)
There are no external forces acting on the system
during the collision.
Figure 2.
p = md
a) Using conservation of momentum, calculate the
final velocity vf (in m/s) and the mass m, of
the car (in kg).
Fext · At = Ap
1
Include a labeled Free Body
Diagram (FBD) showing all momentum vector
K = mv²
components.
Fr = HkN
b) Calculate the kinetic energies (in J) just before
and just after the collision. Is the collision
elastic or inelastic, and why? What is the ratio
Kf/K¡ of the final to the initial kinetic energy?
Wext = F· Ax
Wext = (K – Ko) + (U – U.)
%3D
c) The fused wreckage now slides over a surface with coefficient of kinetic friction
Hk and comes to rest a distance Ax = 150 feet from the point of the collision. Use
the Work-Energy Theorem to calculate µg-
Note: Part c) is not a two-dimensional problem, as in a). It is just a one
dimensional slide on a flat surface with friction.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON