array([[ 1960, 54211], [ 1961, 55438], [ 1962, 56225], [ 1963, 56695], [ 1964, 57032], [ 1965, 57360], [ 1966, 57715], [ 1967, 58055], [ 1968, 58386], [ 1969, 58726], [ 1970, 59063], [ 1971, 59440], [ 1972, 59840], [ 1973, 60243], [ 1974, 60528], [ 1975, 60657], [ 1976, 60586], [ 1977, 60366], [ 1978, 60103], [ 1979, 59980], [ 1980, 60096], [ 1981, 60567], [ 1982, 61345], [ 1983, 62201], [ 1984, 62836], [ 1985, 63026], [ 1986, 62644], [ 1987, 61833], [ 1988, 61079], [ 1989, 61032], [ 1990, 62149], [ 1991, 64622], [ 1992, 68235], [ 1993, 72504], [ 1994, 76700], [ 1995, 80324], [ 1996, 83200], [ 1997, 85451], [ 1998, 87277], [ 1999, 89005], [ 2000, 90853], [ 2001, 92898], [ 2002, 94992], [ 2003, 97017], [ 2004, 98737], [ 2005, 100031], [ 2006, 100832], [ 2007, 101220], [ 2008, 101353], [ 2009, 101453], [ 2010, 101669], [ 2011, 102053], [ 2012, 102577], [ 2013, 103187], [ 2014, 103795], [ 2015, 104341], [ 2016, 104822], [ 2017, 105264]])   Question 2   Now that we have have our data, we need to split this into a training set, and a testing set. But before we split our data into training and testing, we also need to split our data into the predictive features (denoted X) and the response (denoted y). Write a function that will take as input a 2-d numpy array and return four variables in the form of (X_train, y_train), (X_test, y_test), where (X_train, y_train) are the features + response of the training set, and (X-test, y_test) are the features + response of the testing set. Function Specifications: Should take a 2-d numpy array as input. Should split the array such that X is the year, and y is the corresponding population. Should return two tuples of the form (X_train, y_train), (X_test, y_test). Should use sklearn's train_test_split function with a test_size = 0.2 and random_state = 42. Failing Code:  def feature_response_split(arr):     X, y = arr[:, 0], arr[:, 1]     X_train, X_test, y_train, y_test = train_test_split(X.reshape(-1,1), y, test_size = 0.2, random_state = 42)     return (X_train, y_train, X_test,y_test) Expected Output: X_train == array([1996, 1991, 1968, 1977, 1966, 1964, 2001, 1979, 1990, 2009, 2010, 2014, 1975, 1969, 1987, 1986, 1976, 1984, 1993, 2015, 2000, 1971, 1992, 2016, 2003, 1989, 2013, 1961, 1981, 1962, 2005, 1999, 1995, 1983, 2007, 1970, 1982, 1978, 2017, 1980, 1967, 2002, 1974, 1988, 2011, 1998]) y_train == array([ 83200, 64622, 58386, 60366, 57715, 57032, 92898, 59980, 62149, 101453, 101669, 103795, 60657, 58726, 61833, 62644, 60586, 62836, 72504, 104341, 90853, 59440, 68235, 104822, 97017, 61032, 103187, 55438, 60567, 56225, 100031, 89005, 80324, 62201, 101220, 59063, 61345, 60103, 105264, 60096, 58055, 94992, 60528, 61079, 102053, 87277]) X_test == array([1960, 1965, 1994, 1973, 2004, 2012, 1997, 1985, 2006, 1972, 2008, 1963]) y_test == array([ 54211, 57360, 76700, 60243, 98737, 102577, 85451, 63026, 100832, 59840, 101353, 56695])

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
100%

Input array is :-

 

array([[ 1960, 54211], [ 1961, 55438], [ 1962, 56225], [ 1963, 56695], [ 1964, 57032], [ 1965, 57360], [ 1966, 57715], [ 1967, 58055], [ 1968, 58386], [ 1969, 58726], [ 1970, 59063], [ 1971, 59440], [ 1972, 59840], [ 1973, 60243], [ 1974, 60528], [ 1975, 60657], [ 1976, 60586], [ 1977, 60366], [ 1978, 60103], [ 1979, 59980], [ 1980, 60096], [ 1981, 60567], [ 1982, 61345], [ 1983, 62201], [ 1984, 62836], [ 1985, 63026], [ 1986, 62644], [ 1987, 61833], [ 1988, 61079], [ 1989, 61032], [ 1990, 62149], [ 1991, 64622], [ 1992, 68235], [ 1993, 72504], [ 1994, 76700], [ 1995, 80324], [ 1996, 83200], [ 1997, 85451], [ 1998, 87277], [ 1999, 89005], [ 2000, 90853], [ 2001, 92898], [ 2002, 94992], [ 2003, 97017], [ 2004, 98737], [ 2005, 100031], [ 2006, 100832], [ 2007, 101220], [ 2008, 101353], [ 2009, 101453], [ 2010, 101669], [ 2011, 102053], [ 2012, 102577], [ 2013, 103187], [ 2014, 103795], [ 2015, 104341], [ 2016, 104822], [ 2017, 105264]])

 

Question 2

 

Now that we have have our data, we need to split this into a training set, and a testing set. But before we split our data into training and testing, we also need to split our data into the predictive features (denoted X) and the response (denoted y).

Write a function that will take as input a 2-d numpy array and return four variables in the form of (X_train, y_train), (X_test, y_test), where (X_train, y_train) are the features + response of the training set, and (X-test, y_test) are the features + response of the testing set.

Function Specifications:

  • Should take a 2-d numpy array as input.
  • Should split the array such that X is the year, and y is the corresponding population.
  • Should return two tuples of the form (X_train, y_train), (X_test, y_test).
  • Should use sklearn's train_test_split function with a test_size = 0.2 and random_state = 42.

Failing Code: 

def feature_response_split(arr):
    X, y = arr[:, 0], arr[:, 1]
    X_train, X_test, y_train, y_test = train_test_split(X.reshape(-1,1), y, test_size = 0.2, random_state = 42)
    return (X_train, y_train, X_test,y_test)

Expected Output:

X_train == array([1996, 1991, 1968, 1977, 1966, 1964, 2001, 1979, 1990, 2009, 2010, 2014, 1975, 1969, 1987, 1986, 1976, 1984, 1993, 2015, 2000, 1971, 1992, 2016, 2003, 1989, 2013, 1961, 1981, 1962, 2005, 1999, 1995, 1983, 2007, 1970, 1982, 1978, 2017, 1980, 1967, 2002, 1974, 1988, 2011, 1998])

y_train == array([ 83200, 64622, 58386, 60366, 57715, 57032, 92898, 59980, 62149, 101453, 101669, 103795, 60657, 58726, 61833, 62644, 60586, 62836, 72504, 104341, 90853, 59440, 68235, 104822, 97017, 61032, 103187, 55438, 60567, 56225, 100031, 89005, 80324, 62201, 101220, 59063, 61345, 60103, 105264, 60096, 58055, 94992, 60528, 61079, 102053, 87277])

X_test == array([1960, 1965, 1994, 1973, 2004, 2012, 1997, 1985, 2006, 1972, 2008, 1963])

y_test == array([ 54211, 57360, 76700, 60243, 98737, 102577, 85451, 63026, 100832, 59840, 101353, 56695])

 

Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Randomized Select Algorithm
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education