A rotation is an orthogonal transformation C such that det C = +1. Prove that C does, in fact, rotate R^3 around an axis. Explicitly, given a rotation C, show that there exists a number J and points e 1, e 2 , e 3  with ei • ej = dij such that (Fig. 3.5)            C(e1 ) = cos (J) e1 + sin (J) e2  , C(e2) = -sin (J) e1 + cos (J) e2  , C(e3 ) = e3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
  1. rotation is an orthogonal transformation such that det = +1. Prove

that does, in fact, rotate R^3 around an axis. Explicitly, given a rotation C,

show that there exists a number J and points 12 , 3  with e• e= dij such

that (Fig. 3.5)           

C(e1 ) = cos (J) e1 + sin (J) e2  ,

C(e2) = -sin (J) e1 + cos (J) e2  ,

C(e3 ) = e3

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Linear Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,