Lemma 7.3.1. Let V and W be finite-dimensional inner product spaces and let T: VW be a linear transformation. Then Im(7*) = Ker(T)¹ and Ker(T*) = Im(7)¹ 4 (2) dim(Ker(T*)) = dim(Ker(T)) If dim(W) = dim(V) then dim(Im(7*)) dim(Im(T)).
Lemma 7.3.1. Let V and W be finite-dimensional inner product spaces and let T: VW be a linear transformation. Then Im(7*) = Ker(T)¹ and Ker(T*) = Im(7)¹ 4 (2) dim(Ker(T*)) = dim(Ker(T)) If dim(W) = dim(V) then dim(Im(7*)) dim(Im(T)).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please help me.
Fast solution Thankyou.
![Lemma 7.3.1. Let V and W be finite-dimensional inner product spaces
and let T : V → W be a linear transformation. Then
Im(7*) = Ker(T)+ and Ker(T*) = Im(7)+
(2) dim(Ker(7*)) = dim(Ker(T))
(3) If dim(W) = dim(V) then dim(Im(7*)) = dim(Im(7)).
ਦਾ sa dimil]-](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc774bb4e-5e91-450b-91f0-dc972d0bae97%2Fca01ad8c-7a71-43d8-9f8c-9682b369547a%2Fr8y0tu_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Lemma 7.3.1. Let V and W be finite-dimensional inner product spaces
and let T : V → W be a linear transformation. Then
Im(7*) = Ker(T)+ and Ker(T*) = Im(7)+
(2) dim(Ker(7*)) = dim(Ker(T))
(3) If dim(W) = dim(V) then dim(Im(7*)) = dim(Im(7)).
ਦਾ sa dimil]-
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 12 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)