Apply Euler's semi-linear method (no other method allowed!) to the fol- lowing first-order equation using steps of size h = 1, for i = 1, 2, 3, and initial condition y(0) = 8. y' + 2x -Y = x² + 1 24-x² y (x² + 1)²°

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

pply Euler’s semi-linear method (no other method)

 

Apply Euler's semi-linear method (no other method allowed!) to the fol-
lowing first-order equation using steps of size h = 1, for i = 1, 2, 3, and
initial condition y(0) = 8.
y' +
2x
Y
x² + 1 ¥
24-x²
y (x² + 1)²*
Transcribed Image Text:Apply Euler's semi-linear method (no other method allowed!) to the fol- lowing first-order equation using steps of size h = 1, for i = 1, 2, 3, and initial condition y(0) = 8. y' + 2x Y x² + 1 ¥ 24-x² y (x² + 1)²*
Expert Solution
Step 1: Step 1:

To apply Euler's semi-linear method to the given first-order differential equation with a step size of h=1 and the initial condition y(0)=8, we'll follow these steps:

The given equation is:

y apostrophe plus fraction numerator left parenthesis 2 x right parenthesis over denominator left parenthesis x squared plus 1 right parenthesis end fraction space cross times space y equals fraction numerator 2 to the power of 4 minus x squared end exponent over denominator left parenthesis y cross times left parenthesis x squared plus 1 right parenthesis squared end fraction

  1. Initialize:

    • Set the initial condition: y(0)=8
    • Define the step size: h=1
    • Define the range of x values for which you want to approximate y. In this case, we will approximate y for x = 1, 2, and 3.
  2. Use the Euler semi-linear method to update y at each step using the following formula: y left square bracket i plus 1 right square bracket space equals space y left square bracket i right square bracket space plus space h space cross times space fraction numerator left square bracket f left parenthesis x left square bracket i right square bracket comma space y left square bracket i right square bracket right parenthesis space plus space f left parenthesis x left square bracket i plus 1 right square bracket comma space y left square bracket i right square bracket space plus space h space cross times space f left parenthesis x left square bracket i right square bracket comma space y left square bracket i right square bracket right parenthesis right parenthesis right square bracket over denominator 2 end fraction space

    Here, f(x,y) is the derivative of y with respect to x, which is given by the original equation: f left parenthesis x comma y right parenthesis equals fraction numerator left parenthesis 2 to the power of 4 minus x squared end exponent right parenthesis over denominator left parenthesis y cross times left parenthesis x squared plus 1 right parenthesis squared right parenthesis end fraction minus fraction numerator left parenthesis 2 x right parenthesis over denominator left parenthesis x squared plus 1 right parenthesis cross times y end fraction

  3. Calculate y at each step using the above formula:

    For i = 1:

    • x left square bracket 1 right square bracket space equals space 1
    • y left square bracket 1 right square bracket space equals space y left square bracket 0 right square bracket space plus space h space cross times space fraction numerator left square bracket f left parenthesis 0 comma space 8 right parenthesis space plus space f left parenthesis 1 comma space 8 space plus space h space cross times space f left parenthesis 0 comma space 8 right parenthesis right parenthesis right square bracket over denominator 2 end fraction

    For i = 2:

    • x[2]=2
    • y left square bracket 2 right square bracket space equals space y left square bracket 1 right square bracket space plus space h space cross times space fraction numerator left square bracket f left parenthesis 1 comma space y left square bracket 1 right square bracket right parenthesis space plus space f left parenthesis 2 comma space y left square bracket 1 right square bracket space plus space h space cross times space f left parenthesis 1 comma space y left square bracket 1 right square bracket right parenthesis right parenthesis right square bracket over denominator 2 end fraction

    For i = 3:

    • x[3]=3
    • y left square bracket 3 right square bracket space equals space y left square bracket 2 right square bracket space plus space h space cross times space fraction numerator left square bracket f left parenthesis 2 comma space y left square bracket 2 right square bracket right parenthesis space plus space f left parenthesis 3 comma space y left square bracket 2 right square bracket space plus space h space cross times space f left parenthesis 2 comma space y left square bracket 2 right square bracket right parenthesis right parenthesis right square bracket over denominator 2 end fraction
steps

Step by step

Solved in 5 steps with 10 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,