Answer the following: This problem exercises the basic concepts of game playing, using tic-tac-toe (noughts and crosses) as an example. We define Xn as the number of rows, columns, or diagonals with exactly n X’s and no O’s. Similarly, On is the number of rows, columns, or diagonals with just n O’s. The utility function assigns +1 to any position with X3=1 and −1 to any position with O3=1. All other terminal positions have utility 0. For nonterminal positions, we use a linear evaluation function defined as Eval(s)=3X2(s)+X1(s)−(3O2(s)+O1(s)).  a. Show the whole game tree starting from an empty board down to depth 2 (i.e., one X and one O on the board), taking symmetry into account. b. Mark on your tree the evaluations of all the positions at depth 2. c .Using the minimax algorithm, mark on your tree the backed-up values for the positions at depths 1 and 0, and use those values to choose the best starting move.

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question

Answer the following:

This problem exercises the basic concepts of game playing, using tic-tac-toe (noughts and crosses) as an example. We define Xn as the number of rows, columns, or diagonals with exactly n X’s and no O’s. Similarly, On is the number of rows, columns, or diagonals with just n O’s. The utility function assigns +1 to any position with X3=1 and −1 to any position with O3=1. All other terminal positions have utility 0. For nonterminal positions, we use a linear evaluation function defined as Eval(s)=3X2(s)+X1(s)−(3O2(s)+O1(s)). 

a. Show the whole game tree starting from an empty board down to depth 2 (i.e., one X and one O on the board), taking symmetry into account.

b. Mark on your tree the evaluations of all the positions at depth 2.

c .Using the minimax algorithm, mark on your tree the backed-up values for the positions at depths 1 and 0, and use those values to choose the best starting move.

 

Provide original solution!

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Similar questions
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY