Ans 1- Prove L{et coskt} = S+a We Know that ast Hen L{eat.coskt}= fat at coskt dt -st-at • coskt dt (Sta)t dt - (1) let --(S4)t e I= . cos kt dt -(2) Coskt by usng frmula integaadion f two functions - (sta)t Lim Coskt. e - Coso. e Sensmet) - (s+4}t dt -(s+a) -ksinict) -(S+a}t Um coskt e S+a sinkt. ēGta)t dt S+a if bm ft)=0 and g) We know that is beuided then -(sta)t Lim e Нете = im And coskt betndo d on IR. |coskt| | TS for all t elR

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(1) how did you come up with the solution? PLEASE EXPLAIN IN DETAIL because I'm going to make a script out of it

Then
-(Sta)t
coskt. e
Lim
Then
I= -_
Sta
[o -1] -K Teeta)t
• Sinkt dt
Sta
- (S44) t0
•e
d Sinkt)
K
Sta
- (sta)
(St4)t
Sinkt. e
sino. e
Sta
Sta
K. coskt
-(sta)
FP
2.
-(Sta)teslet dt
-L+K_ (o-0) - K
(S+aj2
Sta
using (3)
Since, Sinkt is also
bounded on IR
|Sinktl <1 for all teIR
- I=
Sta
+o
(s+a)2.
K2
I =
6+4)2
S+9
=> I(1+
_k²
S+a
(S+a)2
S+a
(S+9)2
s+a)
From ) and (2), we get
S+a
Hence proved
(S+a)2 + K2
Transcribed Image Text:Then -(Sta)t coskt. e Lim Then I= -_ Sta [o -1] -K Teeta)t • Sinkt dt Sta - (S44) t0 •e d Sinkt) K Sta - (sta) (St4)t Sinkt. e sino. e Sta Sta K. coskt -(sta) FP 2. -(Sta)teslet dt -L+K_ (o-0) - K (S+aj2 Sta using (3) Since, Sinkt is also bounded on IR |Sinktl <1 for all teIR - I= Sta +o (s+a)2. K2 I = 6+4)2 S+9 => I(1+ _k² S+a (S+a)2 S+a (S+9)2 s+a) From ) and (2), we get S+a Hence proved (S+a)2 + K2
1
Ans
Prove
L{Et coskt
S+a
We know that
L{ftt}= Sest f4) dt
Then
Leat.coskt} = ft ent.coskt dt
-st -at
e
• coskt dt
-- ()
Let
-(Sta)t
e
I=
cos kt dt
- (2)
as
-(S+ajt
Coskt
by using fermula indegadion f two functions
-(sta)t
- coso.
i Lim Coskt.e
(S+a) ltj
:(s+a}t
dt
-(Sta)
k sinict) e
-(Stajt
Ix]
Lim coskt e
Sta
sinkt. ēst)t dt
S+a
and g
Um ft)=0
if
too
We know that
is
bounded
then
Lim fCt).glt) = o -3)
-(sta)t
Lim e
= Lim t -
Here
on IR. Icoskt|<1
for all t eIR
And
coskt
beundo d
Transcribed Image Text:1 Ans Prove L{Et coskt S+a We know that L{ftt}= Sest f4) dt Then Leat.coskt} = ft ent.coskt dt -st -at e • coskt dt -- () Let -(Sta)t e I= cos kt dt - (2) as -(S+ajt Coskt by using fermula indegadion f two functions -(sta)t - coso. i Lim Coskt.e (S+a) ltj :(s+a}t dt -(Sta) k sinict) e -(Stajt Ix] Lim coskt e Sta sinkt. ēst)t dt S+a and g Um ft)=0 if too We know that is bounded then Lim fCt).glt) = o -3) -(sta)t Lim e = Lim t - Here on IR. Icoskt|<1 for all t eIR And coskt beundo d
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,