ANOVA calculations and rejection of the null hypothesis

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

5. ANOVA calculations and rejection of the null hypothesis

The following table summarizes the results of a study on SAT prep courses, comparing SAT scores of students in a private preparation class, a high school preparation class, and no preparation class. Use the information from the table to answer the remaining questions.
Treatment
Number of Observations
Sample Mean
Sum of Squares (SS)
Private prep class 40 690 175,500.00
High school prep class 40 680 182,520.00
No prep class 40 640 200,070.00
 
Using the data provided, complete the partial ANOVA summary table that follows. (Hint: T, the treatment total, can be calculated as the sample mean times the number of observations. G, the grand total, can be calculated from the values of T once you have calculated them.)
Source
Sum of Squares (SS)
df
Mean Square (MS)
Between treatments               
Within treatments               
 
In some ANOVA summary tables you will see, the labels in the first (source) column are Treatment, Error, and Total. Which of the following reasons best explains why the within-treatments variance is sometimes referred to as the “error variance”?
The within-treatments variance measures treatment effects as well as random, unsystematic differences within each of the samples assigned to each of the treatments. These differences represent all of the variations that could occur in a study; therefore, they are sometimes referred to as “error.”
 
Differences among members of the sample who received the same treatment occur because some treatments are more effective than others, so it would be an error to receive the less superior treatments.
 
The within-treatments variance measures random, unsystematic differences within each of the samples assigned to each of the treatments. These differences are not due to treatment effects because everyone within each sample received the same treatment; therefore, the differences are sometimes referred to as “error.”
 
Differences among members of the sample who received the same treatment occur when the researcher makes an error, and thus these differences are sometimes referred to as “error.”
 
 
In ANOVA, the F test statistic is the    of the between-treatments variance and the within-treatments variance. The value of the F test statistic is    .
 
When the null hypothesis is true, the F test statistic is     . When the null hypothesis is false, the F test statistic is most likely     . In general, you should reject the null hypothesis for 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman