and if f(x) = sin" (x²) Lim 0 find 2m + n f(x) f'(x) (1 − cos x)m - = 2√√√3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I need to solve them all

and
if f(x) = sin" (x²)
Lim 0
find 2m + n
f(x)ƒ'(x)
(1 cos x)m
= 2√3
Transcribed Image Text:and if f(x) = sin" (x²) Lim 0 find 2m + n f(x)ƒ'(x) (1 cos x)m = 2√3
2x
COS
(-+ cas-¹ (15) + tan
6*
3
1+e²x
2x
¹ (22)
dx
Transcribed Image Text:2x COS (-+ cas-¹ (15) + tan 6* 3 1+e²x 2x ¹ (22) dx
Expert Solution
Step 1: simplifying limit

 Given that  f open parentheses x close parentheses space equals space sin to the power of n open parentheses x squared close parentheses

             rightwards double arrow  f apostrophe open parentheses x close parentheses space equals space n space sin to the power of n minus 1 end exponent open parentheses x squared close parentheses space cos open parentheses x squared close parentheses space open parentheses 2 x close parentheses

              limit as x rightwards arrow 0 of space fraction numerator f open parentheses x close parentheses f apostrophe open parentheses x close parentheses over denominator open parentheses 1 minus cos open parentheses x close parentheses close parentheses to the power of m end fraction equals space limit as x rightwards arrow 0 of space fraction numerator space sin to the power of n open parentheses x squared close parentheses. space n space sin to the power of n minus 1 end exponent open parentheses x squared close parentheses space cos open parentheses x squared close parentheses space open parentheses 2 x close parentheses over denominator open parentheses 2 sin squared open parentheses x over 2 close parentheses close parentheses to the power of m end fraction

                            Formula:  limit as x rightwards arrow 0 of fraction numerator sin space x over denominator x end fraction space equals space 1 

             limit as x rightwards arrow 0 of space fraction numerator f open parentheses x close parentheses f apostrophe open parentheses x close parentheses over denominator open parentheses 1 minus cos open parentheses x close parentheses close parentheses to the power of m end fraction  equals space limit as x rightwards arrow 0 of space fraction numerator space open square brackets fraction numerator sin to the power of n open parentheses x squared close parentheses over denominator x to the power of 2 n end exponent end fraction x to the power of 2 n end exponent close square brackets. space n space open square brackets fraction numerator sin to the power of n minus 1 end exponent open parentheses x squared close parentheses over denominator x to the power of 2 n minus 2 end exponent end fraction x to the power of 2 n minus 2 end exponent close square brackets space cos open parentheses x squared close parentheses space open parentheses 2 x close parentheses over denominator 2 to the power of m open parentheses fraction numerator sin open parentheses x over 2 close parentheses over denominator x over 2 end fraction open parentheses x over 2 close parentheses close parentheses to the power of 2 m end exponent end fraction


                                         equals space limit as x rightwards arrow 0 of space fraction numerator x to the power of 2 n plus 2 n minus 2 plus 1 end exponent space open square brackets fraction numerator sin open parentheses x squared close parentheses over denominator x squared end fraction close square brackets to the power of n. space n space open square brackets fraction numerator sin open parentheses x squared close parentheses over denominator x squared end fraction close square brackets to the power of n minus 1 end exponent space cos open parentheses x squared close parentheses space open parentheses 2 close parentheses over denominator 2 to the power of m open parentheses x over 2 close parentheses to the power of 2 m end exponent open parentheses fraction numerator sin open parentheses x over 2 close parentheses over denominator x over 2 end fraction close parentheses to the power of 2 m end exponent end fraction

                                        equals space open square brackets limit as x rightwards arrow 0 of x to the power of 4 n minus 1 end exponent over open parentheses x over 2 close parentheses to the power of 2 m end exponent space close square brackets fraction numerator space open square brackets 1 close square brackets to the power of n. space n space open square brackets 1 close square brackets to the power of n minus 1 end exponent space cos open parentheses 0 close parentheses space open parentheses 2 close parentheses over denominator 2 to the power of m open parentheses 1 close parentheses to the power of 2 m end exponent end fraction

                                        equals space open square brackets limit as x rightwards arrow 0 of x to the power of 4 n minus 1 minus 2 m end exponent 2 to the power of 2 m end exponent space close square brackets fraction numerator space 2 n over denominator 2 to the power of m end fraction

                                        equals space open square brackets limit as x rightwards arrow 0 of x to the power of 4 n minus 1 minus 2 m end exponent space close square brackets 2 to the power of m plus 1 end exponent n

                    limit as x rightwards arrow 0 of space fraction numerator f open parentheses x close parentheses f apostrophe open parentheses x close parentheses over denominator open parentheses 1 minus cos open parentheses x close parentheses close parentheses to the power of m end fraction space equals space open square brackets limit as x rightwards arrow 0 of x to the power of 4 n minus 1 minus 2 m end exponent space close square brackets 2 to the power of m plus 1 end exponent n

                                         

steps

Step by step

Solved in 3 steps with 19 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,