An overhead 25 m-long, uninsulated industrial steam pipe of 100 mm diameter is routed through a building whose walls and air are at 25°C. Pressurized steam maintains a pipe surface temperature of 150°C, the coefficient associated with natural convection h= 10 W/m2K and the surface emissivity ℇ = 0.8 What is the rate of heat loss from the steam line? If the steam is generated in a gas-fired boiler operating at an efficiency of ɳf = 0.90 and natural gas fuel is priced at Cg = $0.01 per MJ, what is the annual cost of heat loss from the steam line?
An overhead 25 m-long, uninsulated industrial steam pipe of 100 mm diameter is routed through a building whose walls and air are at 25°C. Pressurized steam maintains a pipe surface temperature of 150°C, the coefficient associated with natural convection h= 10 W/m2K and the surface emissivity ℇ = 0.8 What is the rate of heat loss from the steam line? If the steam is generated in a gas-fired boiler operating at an efficiency of ɳf = 0.90 and natural gas fuel is priced at Cg = $0.01 per MJ, what is the annual cost of heat loss from the steam line?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
An overhead 25 m-long, uninsulated industrial steam pipe of 100 mm diameter is routed through a building whose walls and air are at 25°C. Pressurized steam maintains a pipe surface temperature of 150°C, the coefficient associated with natural
- What is the rate of heat loss from the steam line?
- If the steam is generated in a gas-fired boiler operating at an efficiency of ɳf = 0.90 and natural gas fuel is priced at Cg = $0.01 per MJ, what is the annual cost of heat loss from the steam line?

Transcribed Image Text:An overhead 25-m-long, uninsulated industrial steam
pipe of 100 mm diameter is routed through a building
whose walls and air are at 25°C. Pressurized steam
maintains a pipe surface temperature of 150°C, and the
coefficient associated with natural convection ish = 10
W/m? · K. The surface emissivity is e = 0.8.
(a) What is the rate of heat loss from the steam Jine?
(b) If the steam is generated in a gas-fired boiler oper-
ating at an efficiency of n, = 0.90 and natural
priced at C, = $0.01 per MJ, what is the annual
cost of heat loss from the line?
%3D
gas
is
%3D
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON