An opaque surface which is insulated at the back side has a total, hemispherical absorptivity a=0.8 for solar radiation and a total, hemispherical emissivity of e=0.2. A solar radiation flux of 800 W/m2 is incident on this surface. The surface is exposed to the ambient air at T = 300 K and convective heat transfer coefficient is h=15 W/m2 K. Neglect the sky radiation. • Sketch the heat fluxes received and dissipated by this surface • Estimate the equilibrium temperature of the surface (assume the surface temperature is higher than the ambient air temperature). T.= 300 K, h-15 W/m'K 800 w/m a-0.8, e-0.2

icon
Related questions
Question

It's a complete question. Need help asap.

An opaque surface which is insulated at the back side has a total, hemispherical
absorptivity a=0.8 for solar radiation and a total, hemispherical emissivity of e=0.2. A solar
radiation flux of 800 W/m2 is incident on this surface. The surface is exposed to the ambient air at T
300 K and convective heat transfer coefficient is h=15 W/m2 K. Neglect the sky radiation.
• Sketch the heat fluxes received and dissipated by this surface
• Estimate the equilibrium temperature of the surface (assume the surface temperature is higher
than the ambient air temperature).
1.= 300 K, h-15 W/m*K
800 W/m?
a-0.8 , e-0.2
Transcribed Image Text:An opaque surface which is insulated at the back side has a total, hemispherical absorptivity a=0.8 for solar radiation and a total, hemispherical emissivity of e=0.2. A solar radiation flux of 800 W/m2 is incident on this surface. The surface is exposed to the ambient air at T 300 K and convective heat transfer coefficient is h=15 W/m2 K. Neglect the sky radiation. • Sketch the heat fluxes received and dissipated by this surface • Estimate the equilibrium temperature of the surface (assume the surface temperature is higher than the ambient air temperature). 1.= 300 K, h-15 W/m*K 800 W/m? a-0.8 , e-0.2
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer