An isolated atom of certain element emits light of wavelength 529 nm when the atom falls from its sixth excited state into its third excited state. The atom emits a photon of wavelength 422 nm when it drops from its seventh excited state into its third excited state. frind wavelength of the light radiated when the atom makes a transition from its seventh to its sixth excited state, in um. a. 21 b. 2.09 c. 2086.34 d 0.0209 e. 208. 63
An isolated atom of certain element emits light of wavelength 529 nm when the atom falls from its sixth excited state into its third excited state. The atom emits a photon of wavelength 422 nm when it drops from its seventh excited state into its third excited state. frind wavelength of the light radiated when the atom makes a transition from its seventh to its sixth excited state, in um. a. 21 b. 2.09 c. 2086.34 d 0.0209 e. 208. 63
Related questions
Question
An isolated atom of certain element emits light of wavelength 529 nm when the atom falls from its sixth excited state into its third excited state. The atom emits a photon of wavelength 422 nm when it drops from its seventh excited state into its third excited state. frind wavelength of the light radiated when the atom makes a transition from its seventh to its sixth excited state, in um.
a. 21
b. 2.09
c. 2086.34
d 0.0209
e. 208. 63
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps