An electron is in the n = 5 level of ionized helium. (a) Find the longest wavelength that is emitted when the electron makes a transition from the n = 5 level to a lower level. 1.01307 | μm (b) Find the shortest wavelength that can be emitted. 0.32057 um (c) Find the longest wavelength at which the electron in the n = 5 level will absorb a photon and move to a higher state, if we could somehow keep it in that level long enough to absorb. 0.93514 |x um

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
An electron is in the n = 5 level of ionized helium.
(a) Find the longest wavelength that is emitted when the electron makes a transition from the n = 5 level to a lower level.
1.01307
um
(b) Find the shortest wavelength that can be emitted.
0.32057
um
(c) Find the longest wavelength at which the electron in the n = 5 level will absorb a photon and move to a higher state, if we could somehow keep it in that level long enough to
absorb.
0.93514
X μm
(d) Find the shortest wavelength that can be absorbed.
2.176
2 μm
Transcribed Image Text:An electron is in the n = 5 level of ionized helium. (a) Find the longest wavelength that is emitted when the electron makes a transition from the n = 5 level to a lower level. 1.01307 um (b) Find the shortest wavelength that can be emitted. 0.32057 um (c) Find the longest wavelength at which the electron in the n = 5 level will absorb a photon and move to a higher state, if we could somehow keep it in that level long enough to absorb. 0.93514 X μm (d) Find the shortest wavelength that can be absorbed. 2.176 2 μm
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Quantum mechanics and hydrogen atom
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON