An excited electron in an Na atom emits radiation at a wavelength 589 nm and returns to the ground state. If the mean time for the transition is about 20 ns, calculate the inherent width in the emission

Principles of Instrumental Analysis
7th Edition
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Chapter8: An Introduction To Optical Atomic Spectrometry
Section: Chapter Questions
Problem 8.10QAP: In high-temperature sources, sodium atoms emit a doublet with an average wavelength of 1139 nm. The...
icon
Related questions
icon
Concept explainers
Question
An excited electron in an Na atom emits radiation at a wavelength 589 nm and returns to the ground
state. If the mean time for the transition is about 20 ns, calculate the inherent width in the emission
line. Note that the uncertainty principle can be expressed as ApAx and ATAE.
Transcribed Image Text:An excited electron in an Na atom emits radiation at a wavelength 589 nm and returns to the ground state. If the mean time for the transition is about 20 ns, calculate the inherent width in the emission line. Note that the uncertainty principle can be expressed as ApAx and ATAE.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Introduction and Principles of Quantum Theory
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781337399074
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning