An electron has a kinetic energy of 3.00 eV. Find its wavelength.

icon
Related questions
Question
100%
**Question:**

An electron has a kinetic energy of 3.00 eV. Find its wavelength.

**Explanation:**

To find the wavelength of an electron with a given kinetic energy, one can use the de Broglie wavelength formula. The de Broglie wavelength (\(\lambda\)) for a particle is given by:

\[\lambda = \frac{h}{p}\]

where
- \(h\) is the Planck constant (\(6.626 \times 10^{-34} \text{ Js}\)),
- \(p\) is the momentum of the particle.

First, we need to find the momentum (\(p\)). The kinetic energy (KE) of an electron can be related to its momentum using the following equation:

\[ KE = \frac{p^2}{2m} \]

where \(m\) is the mass of the electron (\(9.11 \times 10^{-31} \text{ kg}\)).

Given \(KE = 3.00 \text{ eV}\), we need to convert this energy into Joules (since the Planck constant is in Joules·second). The conversion factor is:

\[ 1 \text{ eV} = 1.602 \times 10^{-19} \text{ J} \]

So, \(3.00 \text{ eV}\) is:

\[ 3.00 \text{ eV} \times 1.602 \times 10^{-19} \text{ J/eV} = 4.806 \times 10^{-19} \text{ J} \]

Using the kinetic energy formula:

\[ 4.806 \times 10^{-19} \text{ J} = \frac{p^2}{2 \times 9.11 \times 10^{-31}} \]

Solving for \(p\):

\[ p^2 = 2 \times 9.11 \times 10^{-31} \text{ kg} \times 4.806 \times 10^{-19} \text{ J} \]
\[ p^2 \approx 8.745 \times 10^{-49} \text{ kg}^2\text{m}^2/\text{s}^2 \]
\[ p \approx \sqrt{8.745 \times 10^{-49}} \text{ kg}\text{m}/\
Transcribed Image Text:**Question:** An electron has a kinetic energy of 3.00 eV. Find its wavelength. **Explanation:** To find the wavelength of an electron with a given kinetic energy, one can use the de Broglie wavelength formula. The de Broglie wavelength (\(\lambda\)) for a particle is given by: \[\lambda = \frac{h}{p}\] where - \(h\) is the Planck constant (\(6.626 \times 10^{-34} \text{ Js}\)), - \(p\) is the momentum of the particle. First, we need to find the momentum (\(p\)). The kinetic energy (KE) of an electron can be related to its momentum using the following equation: \[ KE = \frac{p^2}{2m} \] where \(m\) is the mass of the electron (\(9.11 \times 10^{-31} \text{ kg}\)). Given \(KE = 3.00 \text{ eV}\), we need to convert this energy into Joules (since the Planck constant is in Joules·second). The conversion factor is: \[ 1 \text{ eV} = 1.602 \times 10^{-19} \text{ J} \] So, \(3.00 \text{ eV}\) is: \[ 3.00 \text{ eV} \times 1.602 \times 10^{-19} \text{ J/eV} = 4.806 \times 10^{-19} \text{ J} \] Using the kinetic energy formula: \[ 4.806 \times 10^{-19} \text{ J} = \frac{p^2}{2 \times 9.11 \times 10^{-31}} \] Solving for \(p\): \[ p^2 = 2 \times 9.11 \times 10^{-31} \text{ kg} \times 4.806 \times 10^{-19} \text{ J} \] \[ p^2 \approx 8.745 \times 10^{-49} \text{ kg}^2\text{m}^2/\text{s}^2 \] \[ p \approx \sqrt{8.745 \times 10^{-49}} \text{ kg}\text{m}/\
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer