An automobile manufacturer is concerned about a fault in the braking mechanism of a particular model. The fault can, on rare occasions, cause a catastrophe at high speed. The distribution of the number of cars per year that will experience the catastrophe is a Poisson random variable with λ = 4.5. (a) What is the probability that at most 3 cars per year will experience a catastrophe? (b) What is the probability that more than 2 cars per year will experience a catastrophe? Click here to view page 1 of the table of Poisson probability sums. Click here to view page 2 of the table of Poisson probability sums.
An automobile manufacturer is concerned about a fault in the braking mechanism of a particular model. The fault can, on rare occasions, cause a catastrophe at high speed. The distribution of the number of cars per year that will experience the catastrophe is a Poisson random variable with λ = 4.5. (a) What is the probability that at most 3 cars per year will experience a catastrophe? (b) What is the probability that more than 2 cars per year will experience a catastrophe? Click here to view page 1 of the table of Poisson probability sums. Click here to view page 2 of the table of Poisson probability sums.
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
I need help with this asap please
thanks.
![3
T
0.1
0.2
0.3
0.4
0.6
0.7
0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966
1 0.9953 0.9825 0.9631
2
4
5
6
1²
10
11
12
13
14
15
16
0.9998
1.0000
1²
0.1
Poisson Probability Sums p(x;μ)
Σ p(x;µ)
2-0
1.0
0.8
0.9
0.4493 0.4066
0.9384 0.9098 0.8781 0.8442 0.8088 0.7725
0.9371
0.9989 0.9964 0.9921 0.9856 0.9769 0.9659 0.9526
0.9999 0.9997 0.9992 0.9982 0.9966 0.9942 0.9909
0.9865
1.0000 1.0000 0.9999 0.9998 0.9996 0.9992 0.9986 0.9977
1.0000 1.0000 1.0000 0.9999 0.9998
0.9997
1.0000 1.0000 1.0000
0.8
0.7
0.9
0.2
Tº
fl
1.0
2.0
1.5
2.5
3.0
3.5 4.0
4.5 5.0
0 0.3679 0.2231 0.1353 0.0821 0.0498 0.0302 0.0183 0.0111 0.0067
1 0.7358 0.5578 0.4060 0.2873 0.1991 0.1359 0.0916 0.0611 0.0404
2 0.9197 0.8088 0.6767 0.5438 0.4232 0.3208 0.2381 0.1736 0.1247
3 0.9810 0.9344 0.8571 0.7576 0.6472 0.5366 0.4335 0.3423 0.2650
4 0.9963 0.9814 0.9473 0.8912 0.8153 0.7254 0.6288 0.5321 0.4405
0.9834 0.9580 0.9161 0.8576 0.7851 0.7029 0.6160
6 0.9999 0.9991 0.9955 0.9858 0.9665 0.9347 0.8893 0.8311 0.7622
1.0000 0.9998 0.9989 0.9958 0.9881 0.9733 0.9489 0.9134 0.8666
1.0000
0.9998 0.9989 0.9962 0.9901 0.9786 0.9597 0.9319
1.0000 0.9997 0.9989 0.9967 0.9919 0.9829 0.9682
0.9999 0.9997 0.9990 0.9972 0.9933 0.9863
1.0000
5 0.9994 0.9955
7
8
9
0.3
1.5
"
0.5
0.4
2.0
2.5
0.5
P
0.9999
1.0000
0.6
3.0
f
0.9997 0.9991 0.9976 0.9945
0.9999 0.9997 0.9992 0.9980
0.9999 0.9997
1.0000
0.9999
1.0000
0.9993
0.9998
1.0000 0.9999
1.0000
5.0
3.5
4.0
4.5
1
1
Poisson Probability Sums p(x;μ)
5.5
0.1649
fl
6.0
6.5
7.0
7.5
8.0
8.5
9.0
0 0.0041 0.0025 0.0015 0.0009 0.0006 0.0003 0.0002 0.0001
1 0.0266 0.0174 0.0113 0.0073 0.0047 0.0030 0.0019 0.0012
2 0.0884 0.0620 0.0430 0.0296 0.0203 0.0138 0.0093 0.0062
3 0.2017 0.1512 0.1118 0.0818 0.0591 0.0424 0.0301 0.0212
4 0.3575 0.2851 0.2237 0.1730 0.1321 0.0996 0.0744 0.0550
5 0.5289 0.4457 0.3690 0.3007 0.2414 0.1912 0.1496 0.1157
0.6860 0.6063 0.5265 0.4497 0.3782 0.3134 0.2562 0.2068
0.8095 0.7440 0.6728 0.5987 0.5246 0.4530 0.3856 0.3239 0.2687
0.8944
0.8472 0.7916 0.7291 0.6620 0.5925 0.5231 0.4557 0.3918
0.9462 0.9161 0.8774 0.8305 0.7764 0.7166 0.6530 0.5874 0.5218
0.9747 0.9574 0.9332 0.9015 0.8622 0.8159 0.7634 0.7060 0.6453
11
0.9890 0.9799 0.9661 0.9467 0.9208 0.8881 0.8487 0.8030 0.7520
12 0.9955 0.9912 0.9840 0.9730 0.9573 0.9362 0.9091 0.8758 0.8364
13 0.9983 0.9964 0.9929 0.9872 0.9784 0.9658 0.9486 0.9261 0.8981
14 0.9994 0.9986 0.9970 0.9943 0.9897 0.9827 0.9726 0.9585 0.9400
15 0.9998 0.9995 0.9988 0.9976 0.9954 0.9918 0.9862 0.9780 0.9665
0.9998 0.9996 0.9990
0.9980 0.9963 0.9934 0.9889
0.9823
0.9998 0.9996 0.9992 0.9984 0.9970 0.9947
0.9911
0.9999 0.9999 0.9997 0.9993 0.9987 0.9976 0.9957
1.0000 1.0000 0.9999 0.9997 0.9995 0.9989 0.9980
0.9999 0.9998 0.9996 0.9991
1.0000
0.9999 0.9998 0.9996
1.0000 0.9999 0.9999
0.9999
16 0.9999
1.0000 0.9999
1.0000
17
18
19
20
1.0000
1.0000
9.5
els
6
7
8
9
10
21
22
23
24
P
5.5
6.0
6.5
7.0
2=0
7.5
fl
8.0
8.5
9.0
9.5
0.0001
0.0008
0.0042
0.0149
0.0403
0.0885](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6ac66d3d-c458-48c6-8287-89ab4d2de787%2F0868c0cf-5eda-42a0-884d-7c0d07d791ab%2Fchzvx8p_processed.png&w=3840&q=75)
Transcribed Image Text:3
T
0.1
0.2
0.3
0.4
0.6
0.7
0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966
1 0.9953 0.9825 0.9631
2
4
5
6
1²
10
11
12
13
14
15
16
0.9998
1.0000
1²
0.1
Poisson Probability Sums p(x;μ)
Σ p(x;µ)
2-0
1.0
0.8
0.9
0.4493 0.4066
0.9384 0.9098 0.8781 0.8442 0.8088 0.7725
0.9371
0.9989 0.9964 0.9921 0.9856 0.9769 0.9659 0.9526
0.9999 0.9997 0.9992 0.9982 0.9966 0.9942 0.9909
0.9865
1.0000 1.0000 0.9999 0.9998 0.9996 0.9992 0.9986 0.9977
1.0000 1.0000 1.0000 0.9999 0.9998
0.9997
1.0000 1.0000 1.0000
0.8
0.7
0.9
0.2
Tº
fl
1.0
2.0
1.5
2.5
3.0
3.5 4.0
4.5 5.0
0 0.3679 0.2231 0.1353 0.0821 0.0498 0.0302 0.0183 0.0111 0.0067
1 0.7358 0.5578 0.4060 0.2873 0.1991 0.1359 0.0916 0.0611 0.0404
2 0.9197 0.8088 0.6767 0.5438 0.4232 0.3208 0.2381 0.1736 0.1247
3 0.9810 0.9344 0.8571 0.7576 0.6472 0.5366 0.4335 0.3423 0.2650
4 0.9963 0.9814 0.9473 0.8912 0.8153 0.7254 0.6288 0.5321 0.4405
0.9834 0.9580 0.9161 0.8576 0.7851 0.7029 0.6160
6 0.9999 0.9991 0.9955 0.9858 0.9665 0.9347 0.8893 0.8311 0.7622
1.0000 0.9998 0.9989 0.9958 0.9881 0.9733 0.9489 0.9134 0.8666
1.0000
0.9998 0.9989 0.9962 0.9901 0.9786 0.9597 0.9319
1.0000 0.9997 0.9989 0.9967 0.9919 0.9829 0.9682
0.9999 0.9997 0.9990 0.9972 0.9933 0.9863
1.0000
5 0.9994 0.9955
7
8
9
0.3
1.5
"
0.5
0.4
2.0
2.5
0.5
P
0.9999
1.0000
0.6
3.0
f
0.9997 0.9991 0.9976 0.9945
0.9999 0.9997 0.9992 0.9980
0.9999 0.9997
1.0000
0.9999
1.0000
0.9993
0.9998
1.0000 0.9999
1.0000
5.0
3.5
4.0
4.5
1
1
Poisson Probability Sums p(x;μ)
5.5
0.1649
fl
6.0
6.5
7.0
7.5
8.0
8.5
9.0
0 0.0041 0.0025 0.0015 0.0009 0.0006 0.0003 0.0002 0.0001
1 0.0266 0.0174 0.0113 0.0073 0.0047 0.0030 0.0019 0.0012
2 0.0884 0.0620 0.0430 0.0296 0.0203 0.0138 0.0093 0.0062
3 0.2017 0.1512 0.1118 0.0818 0.0591 0.0424 0.0301 0.0212
4 0.3575 0.2851 0.2237 0.1730 0.1321 0.0996 0.0744 0.0550
5 0.5289 0.4457 0.3690 0.3007 0.2414 0.1912 0.1496 0.1157
0.6860 0.6063 0.5265 0.4497 0.3782 0.3134 0.2562 0.2068
0.8095 0.7440 0.6728 0.5987 0.5246 0.4530 0.3856 0.3239 0.2687
0.8944
0.8472 0.7916 0.7291 0.6620 0.5925 0.5231 0.4557 0.3918
0.9462 0.9161 0.8774 0.8305 0.7764 0.7166 0.6530 0.5874 0.5218
0.9747 0.9574 0.9332 0.9015 0.8622 0.8159 0.7634 0.7060 0.6453
11
0.9890 0.9799 0.9661 0.9467 0.9208 0.8881 0.8487 0.8030 0.7520
12 0.9955 0.9912 0.9840 0.9730 0.9573 0.9362 0.9091 0.8758 0.8364
13 0.9983 0.9964 0.9929 0.9872 0.9784 0.9658 0.9486 0.9261 0.8981
14 0.9994 0.9986 0.9970 0.9943 0.9897 0.9827 0.9726 0.9585 0.9400
15 0.9998 0.9995 0.9988 0.9976 0.9954 0.9918 0.9862 0.9780 0.9665
0.9998 0.9996 0.9990
0.9980 0.9963 0.9934 0.9889
0.9823
0.9998 0.9996 0.9992 0.9984 0.9970 0.9947
0.9911
0.9999 0.9999 0.9997 0.9993 0.9987 0.9976 0.9957
1.0000 1.0000 0.9999 0.9997 0.9995 0.9989 0.9980
0.9999 0.9998 0.9996 0.9991
1.0000
0.9999 0.9998 0.9996
1.0000 0.9999 0.9999
0.9999
16 0.9999
1.0000 0.9999
1.0000
17
18
19
20
1.0000
1.0000
9.5
els
6
7
8
9
10
21
22
23
24
P
5.5
6.0
6.5
7.0
2=0
7.5
fl
8.0
8.5
9.0
9.5
0.0001
0.0008
0.0042
0.0149
0.0403
0.0885
![An automobile manufacturer is concerned about a fault in the braking mechanism of a particular model. The fault can,
on rare occasions, cause a catastrophe at high speed. The distribution of the number of cars per year that will
experience the catastrophe is a Poisson
random variable with λ = 4.5.
(a) What is the probability that at most 3 cars per year will experience a catastrophe?
(b) What is the probability that more than 2 cars per year will experience a catastrophe?
Click here to view page 1 of the table of Poisson probability sums.
Click here to view page 2 of the table of Poisson probability sums.
(a) The probability that at most 3 cars per year will experience a catastrophe is
(Round to four decimal places as needed.)
(b) The probability that more than 2 cars per year will experience a catastrophe is
(Round to four decimal places as needed.)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6ac66d3d-c458-48c6-8287-89ab4d2de787%2F0868c0cf-5eda-42a0-884d-7c0d07d791ab%2Fn1fmyd4_processed.png&w=3840&q=75)
Transcribed Image Text:An automobile manufacturer is concerned about a fault in the braking mechanism of a particular model. The fault can,
on rare occasions, cause a catastrophe at high speed. The distribution of the number of cars per year that will
experience the catastrophe is a Poisson
random variable with λ = 4.5.
(a) What is the probability that at most 3 cars per year will experience a catastrophe?
(b) What is the probability that more than 2 cars per year will experience a catastrophe?
Click here to view page 1 of the table of Poisson probability sums.
Click here to view page 2 of the table of Poisson probability sums.
(a) The probability that at most 3 cars per year will experience a catastrophe is
(Round to four decimal places as needed.)
(b) The probability that more than 2 cars per year will experience a catastrophe is
(Round to four decimal places as needed.)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 6 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)