An approximation for the boundary-layer shape in Figs. 1.5b and P1.51 is the formula TY - U sin 28 и(у) 0 < y< 8
An approximation for the boundary-layer shape in Figs. 1.5b and P1.51 is the formula TY - U sin 28 и(у) 0 < y< 8
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Fluid
![**Boundary-Layer Shape Approximation**
An approximation for the boundary-layer shape in Figs. 1.5b and P1.51 is represented by the following formula:
\[ u(y) \approx U \sin\left(\frac{\pi y}{2 \delta}\right), \quad 0 \le y \le \delta \]
where:
- \( U \) is the stream velocity far from the wall.
- \( \delta \) is the boundary layer thickness.
- \( y \) is the distance from the wall.
If the fluid is helium at 20°C and 1 atm, and given that \( U = 10.8 \, \text{m/s} \) and \( \delta = 3 \, \text{cm} \), use the formula to:
1. Estimate the wall shear stress \( \tau_w \) in Pa.
2. Find the position in the boundary layer where \( \tau \) is one-half of \( \tau_w \).
**Diagram Explanation:**
The diagram below illustrates the boundary layer where the velocity \( u(y) \) varies from zero at the wall to the free stream velocity \( U \) at \( y = \delta \).
- The x-axis represents the distance from the wall along the boundary layer.
- The y-axis represents the distance perpendicular to the wall.
\[
\begin{array}{c|c}
&y \\ \hline
0 & \\
& \\
& \\
& y = \delta \\
\end{array}
\]
- The horizontal arrows denote the velocity profile \( u(y) \) which increases from zero at the wall (lower part of the graph) to \( U \) at \( y = \delta \) (upper part of the graph).
**Steps for Calculations:**
1. **Wall Shear Stress \( \tau_w \):**
To estimate the wall shear stress:
\[
\tau_w = \mu \left. \frac{\partial u}{\partial y} \right|_{y=0}
\]
where \( \mu \) is the dynamic viscosity of helium at 20°C.
2. **Position in Boundary Layer:**
To find the position \( y \) where the shear stress is half of \( \tau_w \):
\[
\tau = \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F508ae4f5-8e9f-43cb-9ab2-37d719369fa8%2F4d9179b5-04b2-4c29-ab58-bf24e10cc59f%2Fgpj7vn.png&w=3840&q=75)
Transcribed Image Text:**Boundary-Layer Shape Approximation**
An approximation for the boundary-layer shape in Figs. 1.5b and P1.51 is represented by the following formula:
\[ u(y) \approx U \sin\left(\frac{\pi y}{2 \delta}\right), \quad 0 \le y \le \delta \]
where:
- \( U \) is the stream velocity far from the wall.
- \( \delta \) is the boundary layer thickness.
- \( y \) is the distance from the wall.
If the fluid is helium at 20°C and 1 atm, and given that \( U = 10.8 \, \text{m/s} \) and \( \delta = 3 \, \text{cm} \), use the formula to:
1. Estimate the wall shear stress \( \tau_w \) in Pa.
2. Find the position in the boundary layer where \( \tau \) is one-half of \( \tau_w \).
**Diagram Explanation:**
The diagram below illustrates the boundary layer where the velocity \( u(y) \) varies from zero at the wall to the free stream velocity \( U \) at \( y = \delta \).
- The x-axis represents the distance from the wall along the boundary layer.
- The y-axis represents the distance perpendicular to the wall.
\[
\begin{array}{c|c}
&y \\ \hline
0 & \\
& \\
& \\
& y = \delta \\
\end{array}
\]
- The horizontal arrows denote the velocity profile \( u(y) \) which increases from zero at the wall (lower part of the graph) to \( U \) at \( y = \delta \) (upper part of the graph).
**Steps for Calculations:**
1. **Wall Shear Stress \( \tau_w \):**
To estimate the wall shear stress:
\[
\tau_w = \mu \left. \frac{\partial u}{\partial y} \right|_{y=0}
\]
where \( \mu \) is the dynamic viscosity of helium at 20°C.
2. **Position in Boundary Layer:**
To find the position \( y \) where the shear stress is half of \( \tau_w \):
\[
\tau = \
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 6 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY