An aluminum ring of radius r₁ = 5.00 cm and a resistance of 3.25 × 10-4 is placed around one end of a long air-core solenoid with 1 020 turns per meter and radius r₂ = 3.00 cm as shown in the figure below. Assume the axial component of the field produced by the solenoid is one-half as strong over the area of the end of the solenoid as at the center of the solenoid. Also assume the solenoid produces negligible field outside its cross-sectional area. The current in the solenoid is increasing at a rate of 270 A/s. (a) What is the induced current in the ring? A (b) At the center of the ring, what is the magnitude of the magnetic field produced by the induced current in the ring? μτ
An aluminum ring of radius r₁ = 5.00 cm and a resistance of 3.25 × 10-4 is placed around one end of a long air-core solenoid with 1 020 turns per meter and radius r₂ = 3.00 cm as shown in the figure below. Assume the axial component of the field produced by the solenoid is one-half as strong over the area of the end of the solenoid as at the center of the solenoid. Also assume the solenoid produces negligible field outside its cross-sectional area. The current in the solenoid is increasing at a rate of 270 A/s. (a) What is the induced current in the ring? A (b) At the center of the ring, what is the magnitude of the magnetic field produced by the induced current in the ring? μτ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images