Ammonia is one of the chemical constituents of industrial waste that must be removed in a treatment plant before the waste can safely be discharged into a river or estuary. Ammonia is normally present in wastewater as aqueous ammonium hydroxide NH 4 OH. A two-part process is frequently carried out to accomplish the removal. Lime (CaO) is first added to the wastewater, leading to the reaction CaO H2O! Ca2 2 OH The hydroxide ions produced in this reaction drive the following reaction to the right, resulting in the conversion of ammonium ions to dissolved ammonia: NH 4 OH NH3 g H2O l Air is then contacted with the wastewater, stripping out the ammonia. (a) One million gallons per day of alkaline wastewater containing 0.03 mole NH3/mole ammoniafree H2O is fed to a stripping tower that operates at 68°F. Air at 68°F and 21.3 psia contacts the wastewater countercurrently as it passes through the tower. The feed ratio is 300 ft3 air/gal wastewater, and 93% of the ammonia is stripped from the wastewater. Calculate the volumetric flow rate of the gas leaving the tower and the partial pressure of ammonia in this gas. (b) Briefly explain in terms a first-year chemistry student could understand how this process works. Include an equilibrium constant for the second reaction in your explanation
Ammonia is one of the chemical constituents of industrial waste that must be removed in a treatment plant before the waste can safely be discharged into a river or estuary. Ammonia is normally present in wastewater as aqueous ammonium hydroxide NH 4 OH. A two-part process is frequently carried out to accomplish the removal. Lime (CaO) is first added to the wastewater, leading to the reaction CaO H2O! Ca2 2 OH The hydroxide ions produced in this reaction drive the following reaction to the right, resulting in the conversion of ammonium ions to dissolved ammonia: NH 4 OH NH3 g H2O l Air is then contacted with the wastewater, stripping out the ammonia. (a) One million gallons per day of alkaline wastewater containing 0.03 mole NH3/mole ammoniafree H2O is fed to a stripping tower that operates at 68°F. Air at 68°F and 21.3 psia contacts the wastewater countercurrently as it passes through the tower. The feed ratio is 300 ft3 air/gal wastewater, and 93% of the ammonia is stripped from the wastewater. Calculate the volumetric flow rate of the gas leaving the tower and the partial pressure of ammonia in this gas. (b) Briefly explain in terms a first-year chemistry student could understand how this process works. Include an equilibrium constant for the second reaction in your explanation
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
100%
Ammonia is one of the chemical constituents of industrial waste that must be removed in a treatment plant before the waste can safely be discharged into a river or estuary. Ammonia is normally present in wastewater as aqueous ammonium hydroxide NH 4 OH. A two-part process is frequently carried out to accomplish the removal. Lime (CaO) is first added to the wastewater, leading to the reaction CaO H2O! Ca2 2 OH The hydroxide ions produced in this reaction drive the following reaction to the right, resulting in the conversion of ammonium ions to dissolved ammonia: NH 4 OH NH3 g H2O l Air is then contacted with the wastewater, stripping out the ammonia. (a) One million gallons per day of alkaline wastewater containing 0.03 mole NH3/mole ammoniafree H2O is fed to a stripping tower that operates at 68°F. Air at 68°F and 21.3 psia contacts the wastewater countercurrently as it passes through the tower. The feed ratio is 300 ft3 air/gal wastewater, and 93% of the ammonia is stripped from the wastewater. Calculate the volumetric flow rate of the gas leaving the tower and the partial pressure of ammonia in this gas. (b) Briefly explain in terms a first-year chemistry student could understand how this process works. Include an equilibrium constant for the second reaction in your explanation
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
How were you able to get the equilibirum reaction constant?
Solution
by Bartleby Expert
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The