Aluminum reacts with chlorine gas to form aluminum chloride via the following reaction: 2Al(s)+3Cl2(g)→2AlCl3(s) You are given 14.0 gg of aluminum and 19.0 g of chlorine gas.   If you had excess chlorine, how many moles of of aluminum chloride could be produced from 14.0 g of aluminum? Express your answer to three significant figures and include the appropriate units.

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

Aluminum reacts with chlorine gas to form aluminum chloride via the following reaction:

2Al(s)+3Cl2(g)→2AlCl3(s)

You are given 14.0 gg of aluminum and 19.0 g of chlorine gas.

 

If you had excess chlorine, how many moles of of aluminum chloride could be produced from 14.0 g of aluminum?
Express your answer to three significant figures and include the appropriate units.
In the following chemical reaction, 2 mol of A will react with 1 mol of B to produce 1 mol of A₂B without anything left over:

\[
2A + B \rightarrow A_2B
\]

But what if you're given 2.8 mol of A and 3.2 mol of B? The amount of product formed is limited by the reactant that runs out first, called the limiting reactant. To identify the limiting reactant, calculate the amount of product formed from each amount of reactant separately:

\[
2.8 \, \text{mol} \, A \times \frac{1 \, \text{mol} \, A_2B}{2 \, \text{mol} \, A} = 1.4 \, \text{mol} \, A_2B
\]

\[
3.2 \, \text{mol} \, B \times \frac{1 \, \text{mol} \, A_2B}{1 \, \text{mol} \, B} = 3.2 \, \text{mol} \, A_2B
\]

Notice that less product is formed with the given amount of reactant A. Thus, A is the limiting reactant, and a maximum of 1.4 mol of A₂B can be formed from the given amounts.
Transcribed Image Text:In the following chemical reaction, 2 mol of A will react with 1 mol of B to produce 1 mol of A₂B without anything left over: \[ 2A + B \rightarrow A_2B \] But what if you're given 2.8 mol of A and 3.2 mol of B? The amount of product formed is limited by the reactant that runs out first, called the limiting reactant. To identify the limiting reactant, calculate the amount of product formed from each amount of reactant separately: \[ 2.8 \, \text{mol} \, A \times \frac{1 \, \text{mol} \, A_2B}{2 \, \text{mol} \, A} = 1.4 \, \text{mol} \, A_2B \] \[ 3.2 \, \text{mol} \, B \times \frac{1 \, \text{mol} \, A_2B}{1 \, \text{mol} \, B} = 3.2 \, \text{mol} \, A_2B \] Notice that less product is formed with the given amount of reactant A. Thus, A is the limiting reactant, and a maximum of 1.4 mol of A₂B can be formed from the given amounts.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY