Alpha particles (mass = 6.7 × 10^-27 kg, q = +2e) are accelerated from rest through a potential difference of 3.0 kV, then enter a uniform magnetic field B = 0.40 T perpendicular to their direction of motion. Calculate the radius of the path.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Alpha particles (mass = 6.7 × 10^-27 kg, q = +2e) are accelerated from rest through a potential difference of 3.0 kV, then enter a uniform magnetic field B = 0.40 T perpendicular to their direction of motion. Calculate the radius of the path.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Alpha particles (mass = 6.7 × 10^-27 kg, q = +2e) are accelerated from rest through a potential difference of 3.0 kV. They then enter a uniform magnetic field B = 0.40 T perpendicular to their direction of motion. Calculate the radius of their path.

Problem in photo.

solution
We know that, sadius of charge
moving in magnetic field,
R= mu
98
why
not use this eft.?
It can be modified as.
2 mq v
R=
√2mV
9 B
Put the known values,
R = √2 (6.7x10-27) (3x10³)
√2x4.6x10-19) (0.40)
R = 4.483 X 10-12
=
4x10-10 x0.40
R=
јава
I don't understand
Why use this?
0.0280 m
Answer
Transcribed Image Text:solution We know that, sadius of charge moving in magnetic field, R= mu 98 why not use this eft.? It can be modified as. 2 mq v R= √2mV 9 B Put the known values, R = √2 (6.7x10-27) (3x10³) √2x4.6x10-19) (0.40) R = 4.483 X 10-12 = 4x10-10 x0.40 R= јава I don't understand Why use this? 0.0280 m Answer
Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Magnetic field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON