All airplane passengers at the Lake City Regional Airport must pass through a security screening area before proceeding to the boarding area. The airport has three screening stations available, and the facility manager must decide how many to have open at any particular time. The service rate for processing passengers at each screening station is 4 passengers per minute. On Monday morning the arrival rate is 7.8 passengers per minute. Assume that processing times at each screening station follow an exponential distribution and that arrivals follow a Poisson distribution. When the security level is raised to high, the service rate for processing passengers is reduced to 3 passengers per minute at each screening station. Suppose the security level is raised to high on Monday morning. Note: Use P0 values from Table 11.4 to answer the questions below.   The facility manager's goal is to limit the average number of passengers waiting in line to 8 or fewer. How many screening stations must be open in order to satisfy the manager's goal? Having 3  station(s) open satisfies the manager's goal to limit the average number of passengers in the waiting line to at most 8

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question

All airplane passengers at the Lake City Regional Airport must pass through a security screening area before proceeding to the boarding area. The airport has three screening stations available, and the facility manager must decide how many to have open at any particular time. The service rate for processing passengers at each screening station is 4 passengers per minute. On Monday morning the arrival rate is 7.8 passengers per minute. Assume that processing times at each screening station follow an exponential distribution and that arrivals follow a Poisson distribution. When the security level is raised to high, the service rate for processing passengers is reduced to 3 passengers per minute at each screening station. Suppose the security level is raised to high on Monday morning.

Note: Use P0 values from Table 11.4 to answer the questions below.

 

  1. The facility manager's goal is to limit the average number of passengers waiting in line to 8 or fewer. How many screening stations must be open in order to satisfy the manager's goal?

    Having 3  station(s) open satisfies the manager's goal to limit the average number of passengers in the waiting line to at most 8.

  2. What is the average time required for a passenger to pass through security screening? Round your answer to two decimal places.

    W = fill in the blank 2 minutes
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,