Alkyl halides 1-chlorobutane 2-chlorobutane Allyl chloride 2-chloro-2-methylpropane 1-chloro-2-methylpropane 2-bromobutane SN1 conditions = Silver Nitrate in Ethanol 1. Rank the alkyl halides according to their SN1 reactivity. If compounds are similar in reactivity, you may group them in your ranking. Considering substitution, leaving group, temperature, solvent, etc... provide an explanation for each pairwise ranking.
Reactions of Ethers
Ethers (R-O-R’) are compounds formed by replacing hydrogen atoms of an alcohol (R-OH compound) or a phenol (C6H5OH) by an aryl/ acyl group (functional group after removing single hydrogen from an aromatic ring). In this section, reaction, preparation and behavior of ethers are discussed in the context of organic chemistry.
Epoxides
Epoxides are a special class of cyclic ethers which are an important functional group in organic chemistry and generate reactive centers due to their unusual high reactivity. Due to their high reactivity, epoxides are considered to be toxic and mutagenic.
Williamson Ether Synthesis
An organic reaction in which an organohalide and a deprotonated alcohol forms ether is known as Williamson ether synthesis. Alexander Williamson developed the Williamson ether synthesis in 1850. The formation of ether in this synthesis is an SN2 reaction.
1-chlorobutane
2-chlorobutane
Allyl chloride
2-chloro-2-methylpropane
1-chloro-2-methylpropane
2-bromobutane
SN1 conditions = Silver Nitrate in Ethanol
1. Rank the alkyl halides according to their SN1 reactivity. If compounds are similar in reactivity, you may group them in your ranking. Considering substitution, leaving group, temperature, solvent, etc... provide an explanation for each pairwise ranking.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images