**Question** The matrix \[ A = \begin{bmatrix} 2 & 5 & 4 \\ 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \end{bmatrix} \] has singular value decomposition. \[ \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \] \[ \begin{bmatrix} 12 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \] \[ \begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{bmatrix} \] (a) Use the singular value decomposition to find orthonormal bases for \( R(A^T) \) and \( N(A) \). (b) Use the singular value decomposition to find orthonormal bases for \( R(A) \) and \( N(A^T) \).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Question**

The matrix 

\[ A = \begin{bmatrix} 2 & 5 & 4 \\ 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \end{bmatrix} \]

has singular value decomposition.

\[
\begin{bmatrix} 
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}
\end{bmatrix}
\]

\[
\begin{bmatrix} 
12 & 0 & 0 \\ 
0 & 6 & 0 \\ 
0 & 0 & 0 \\ 
0 & 0 & 0 
\end{bmatrix}
\]

\[
\begin{bmatrix} 
\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ 
-\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ 
\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} 
\end{bmatrix}
\]

(a) Use the singular value decomposition to find orthonormal bases for \( R(A^T) \) and \( N(A) \).

(b) Use the singular value decomposition to find orthonormal bases for \( R(A) \) and \( N(A^T) \).
Transcribed Image Text:**Question** The matrix \[ A = \begin{bmatrix} 2 & 5 & 4 \\ 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \end{bmatrix} \] has singular value decomposition. \[ \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \] \[ \begin{bmatrix} 12 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \] \[ \begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{bmatrix} \] (a) Use the singular value decomposition to find orthonormal bases for \( R(A^T) \) and \( N(A) \). (b) Use the singular value decomposition to find orthonormal bases for \( R(A) \) and \( N(A^T) \).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,