Air is compressed in an axial-flow compressor operating at steady state from 27°C, 1 bar to a pressure of 2.1 bar 7.60 The work required is 94.6 kJ per kg of air flowing. Heat transfer from the compressor occurs at an average surface temperature of 40°C at the rate of 14 kJ per kg of air flowing. The effects of motion and gravity can be ignored. Let To = 20°C, Po 1 bar. Assuming ideal gas behavior, (a) determine the temperature of the air at the exit, in °C, (b) determine the rate of exergy destruction within the compressor, in kJ per kg of air flowing, and (c) perform a full exergy accounting, in kJ per kg of air flowing, based on work input

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Air is compressed in an axial-flow compressor operating at steady state from 27°C, 1 bar to a pressure of 2.1 bar
7.60
The work required is 94.6 kJ per kg of air flowing. Heat transfer from the compressor occurs at an average surface
temperature of 40°C at the rate of 14 kJ per kg of air flowing. The effects of motion and gravity can be ignored. Let To =
20°C, Po 1 bar. Assuming ideal gas behavior, (a) determine the temperature of the air at the exit, in °C, (b) determine the
rate of exergy destruction within the compressor, in kJ per kg of air flowing, and (c) perform a full exergy accounting, in kJ
per kg of air flowing, based on work input
Transcribed Image Text:Air is compressed in an axial-flow compressor operating at steady state from 27°C, 1 bar to a pressure of 2.1 bar 7.60 The work required is 94.6 kJ per kg of air flowing. Heat transfer from the compressor occurs at an average surface temperature of 40°C at the rate of 14 kJ per kg of air flowing. The effects of motion and gravity can be ignored. Let To = 20°C, Po 1 bar. Assuming ideal gas behavior, (a) determine the temperature of the air at the exit, in °C, (b) determine the rate of exergy destruction within the compressor, in kJ per kg of air flowing, and (c) perform a full exergy accounting, in kJ per kg of air flowing, based on work input
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 5 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY