10. Prove that if (un) is a sequence for which lim(un – Un-1) Un :l, then lim = l. 1 11. Let (um) be a sequence of strictly positive numbers. Show that Un+1 (a) lim = l lim Vun = l. Un (b) lim un — е lim Vuju2... Un = l. 12. Show that n 1 27 1 (b) lim - T[(2+ k)*/m . 1 (a) lim -I[(2n + k)!/n 4e n k=1 n k=1 e 13. Calculus limit of the following sequences. 1 (а) ап — 1 (b) fn PE N. p+1' k=1 k=1 14. Prove that n 1 na+1 (a) (a < -1), ~ In n, k k=1 a +1 k=n n n In n ni-a, na+1 In k (b) > ka ~ (a > -1), (d) > (a < 1), a +1' ka k=1 1 - a k=1 =WI WI

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
10. Prove that if (un) is a sequence for which lim(un – Un-1)
Un
:l, then lim
= l.
1
11. Let (um) be a sequence of strictly positive numbers. Show that
Un+1
(a) lim
= l
lim Vun
= l.
Un
(b) lim un — е
lim Vuju2... Un = l.
12. Show that
n
1
27
1
(b) lim - T[(2+ k)*/m .
1
(a) lim -I[(2n + k)!/n
4e
n
k=1
n
k=1
e
13. Calculus limit of the following sequences.
1
(а) ап —
1
(b) fn
PE N.
p+1'
k=1
k=1
14. Prove that
n
1
na+1
(a)
(a < -1),
~ In n,
k
k=1
a +1
k=n
n
n
In n
ni-a,
na+1
In k
(b) > ka ~
(a > -1),
(d) >
(a < 1),
a +1'
ka
k=1
1 - a
k=1
=WI WI
Transcribed Image Text:10. Prove that if (un) is a sequence for which lim(un – Un-1) Un :l, then lim = l. 1 11. Let (um) be a sequence of strictly positive numbers. Show that Un+1 (a) lim = l lim Vun = l. Un (b) lim un — е lim Vuju2... Un = l. 12. Show that n 1 27 1 (b) lim - T[(2+ k)*/m . 1 (a) lim -I[(2n + k)!/n 4e n k=1 n k=1 e 13. Calculus limit of the following sequences. 1 (а) ап — 1 (b) fn PE N. p+1' k=1 k=1 14. Prove that n 1 na+1 (a) (a < -1), ~ In n, k k=1 a +1 k=n n n In n ni-a, na+1 In k (b) > ka ~ (a > -1), (d) > (a < 1), a +1' ka k=1 1 - a k=1 =WI WI
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,