10. Prove that if (un) is a sequence for which lim(un – Un-1) Un :l, then lim = l. 1 11. Let (um) be a sequence of strictly positive numbers. Show that Un+1 (a) lim = l lim Vun = l. Un (b) lim un — е lim Vuju2... Un = l. 12. Show that n 1 27 1 (b) lim - T[(2+ k)*/m . 1 (a) lim -I[(2n + k)!/n 4e n k=1 n k=1 e 13. Calculus limit of the following sequences. 1 (а) ап — 1 (b) fn PE N. p+1' k=1 k=1 14. Prove that n 1 na+1 (a) (a < -1), ~ In n, k k=1 a +1 k=n n n In n ni-a, na+1 In k (b) > ka ~ (a > -1), (d) > (a < 1), a +1' ka k=1 1 - a k=1 =WI WI
10. Prove that if (un) is a sequence for which lim(un – Un-1) Un :l, then lim = l. 1 11. Let (um) be a sequence of strictly positive numbers. Show that Un+1 (a) lim = l lim Vun = l. Un (b) lim un — е lim Vuju2... Un = l. 12. Show that n 1 27 1 (b) lim - T[(2+ k)*/m . 1 (a) lim -I[(2n + k)!/n 4e n k=1 n k=1 e 13. Calculus limit of the following sequences. 1 (а) ап — 1 (b) fn PE N. p+1' k=1 k=1 14. Prove that n 1 na+1 (a) (a < -1), ~ In n, k k=1 a +1 k=n n n In n ni-a, na+1 In k (b) > ka ~ (a > -1), (d) > (a < 1), a +1' ka k=1 1 - a k=1 =WI WI
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,