actuaZ D X=Ytmacking weigh Şk.(i-cx-3)³), ifɔ 147 f(x)= 0, otherwise (4) k=? SFxsdx=1) →1= (k(1-(x-3)²)dx =k ((1-t³)dt- t=x-3 dt =(x-3)'dx=dx 3 |t=1 3 14=-1 1=k. (를+를) 1=k.=k-류 4 (c) P(X>3)= Sfcx)dx= 3(1-(x-3)° d« t=x-3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
100%

Attached is a screen shot from my professor's working a textbook problem on the topic: Cumulative Distribution Functionsand expected Values

Can you explain why he suddenly changes the upper and lower bounds of the integral from 2-4 to -1 to 1? I'm rusty on my integral calculus. Thank you.

actuaZ
D X=Ytmacking weigh
Şk.(i-cx-3)³), ifɔ
147
f(x)=
0, otherwise
(4) k=? SFxsdx=1)
→1= (k(1-(x-3)²)dx =k ((1-t³)dt-
t=x-3
dt =(x-3)'dx=dx
3
|t=1
3 14=-1
1=k. (를+를) 1=k.=k-류
4
(c) P(X>3)= Sfcx)dx= 3(1-(x-3)° d«
t=x-3
Transcribed Image Text:actuaZ D X=Ytmacking weigh Şk.(i-cx-3)³), ifɔ 147 f(x)= 0, otherwise (4) k=? SFxsdx=1) →1= (k(1-(x-3)²)dx =k ((1-t³)dt- t=x-3 dt =(x-3)'dx=dx 3 |t=1 3 14=-1 1=k. (를+를) 1=k.=k-류 4 (c) P(X>3)= Sfcx)dx= 3(1-(x-3)° d« t=x-3
Expert Solution
Step 1

Given, the PMF, fx=k1-x-32, 2x40, otherwise

 

Step 2

(b) To find k:

From the property of PMF -fxdx=1.

Consider,

-fxdx=1-20dx+24k1-x-32dx+40dx=124k1-x-32dx=1Substitute, x-3=tdx=dt  & x varies from 2 to 4t=x-3 varies from t=2-3=-1 to t=4-3=1.Thus the intgral becomes, -11k1-t2dt=1k-111-t2dt=1kt-t33-11=1k1-13--1--133=1k23+23=1k×43=1k=34

Thus, k=34.

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,