A,b,c are solved needs only answer for d part
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
A,b,c are solved needs only answer for d part
![(a)
So
put
So
Let
I =
So
I
I =
value
I =
I =
I = √3x² (x²-2)" dz
put
Su" du
Put
2²
5
Let
So that
+ C
of
So
(x²³= 2)² + c
5
u
So
I =
put
U = x²³ - 2
=
put
that
we
→
=)
- Stdt. t.
6
value of t
put value of
that
du
dx
du =
((2x+3)(x²+32-4)
4
(x² + 9x-4) +
6
I = (x²-9)
8
n+l
[ A₁ √x dx = 22²1
n+l
get
t =
dt
dx
(c) Let I= √x (x²-3) dx
и
3x² dx
we
dt = (2x +9) dx
3x²
+ C
+ C
U =
du
2
x² + 9x - 4
du
= 2x + 9
+ C
get
du =
dx
x²-9
=
I= √ ₁² du = = √₁² du
S
u³
Su³
2
2
2x
= 2x dx
x dx
we
• +4² + c
и
2
dx
4
니
8
+ C
get](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F35d20db0-9877-49de-ad3a-098cf03c57fc%2Ff444e245-c83a-44cf-81ed-8848ff0fd047%2Fimvn0vi_processed.jpeg&w=3840&q=75)
Transcribed Image Text:(a)
So
put
So
Let
I =
So
I
I =
value
I =
I =
I = √3x² (x²-2)" dz
put
Su" du
Put
2²
5
Let
So that
+ C
of
So
(x²³= 2)² + c
5
u
So
I =
put
U = x²³ - 2
=
put
that
we
→
=)
- Stdt. t.
6
value of t
put value of
that
du
dx
du =
((2x+3)(x²+32-4)
4
(x² + 9x-4) +
6
I = (x²-9)
8
n+l
[ A₁ √x dx = 22²1
n+l
get
t =
dt
dx
(c) Let I= √x (x²-3) dx
и
3x² dx
we
dt = (2x +9) dx
3x²
+ C
+ C
U =
du
2
x² + 9x - 4
du
= 2x + 9
+ C
get
du =
dx
x²-9
=
I= √ ₁² du = = √₁² du
S
u³
Su³
2
2
2x
= 2x dx
x dx
we
• +4² + c
и
2
dx
4
니
8
+ C
get
![Evaluate the indefinite integrals using Substitution. (use
C for the constant of integration.)
a) [ 3x²(x²³ - 2) ¹ dx =
/
›) (2x +9)(x² +9x − 4)³ dx =
-
c) √ x(x² − 9)³ dx
=
d) =
(28x + 4)(7x² + 2x − 8) ª dx
(28](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F35d20db0-9877-49de-ad3a-098cf03c57fc%2Ff444e245-c83a-44cf-81ed-8848ff0fd047%2Fwilxan_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Evaluate the indefinite integrals using Substitution. (use
C for the constant of integration.)
a) [ 3x²(x²³ - 2) ¹ dx =
/
›) (2x +9)(x² +9x − 4)³ dx =
-
c) √ x(x² − 9)³ dx
=
d) =
(28x + 4)(7x² + 2x − 8) ª dx
(28
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)