A6 An ammonia condenser uses a shell-and-tube heat exchanger. Ammonia enters the shell (in its saturated vapour state) at 60°C, and the overall heat transfer coefficient, U, is 1000 W/m?K. If the inlet and exit water temperatures are 20°C and 40°C, respectively, and the heat exchanger effectiveness is 60%, determine the area required for a heat transfer of 300 kW. By how much would the heat transfer decrease if the water flow rate was reduced by 50% while keeping the heat exchanger area and U the same? Use cp,water = 4.179 kJ/kgK and Tables QA6-1 and QA6-2 (see below) to obtain your solution.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
Question A6 An ammonia condenser uses a shell-and-tube heat exchanger.
Ammonia enters the shell (in its saturated vapour state) at 60°C, and
the overall heat transfer coefficient, U, is 1000 W/m?K. If the inlet and
exit water temperatures are 20°C and 40°C, respectively, and the heat
exchanger effectiveness is 60%, determine the area required for a heat
transfer of 300 kW. By how much would the heat transfer decrease if
the water flow rate was reduced by 50% while keeping the heat
exchanger area and U the same? Use cp,water = 4.179 kJ/kgK and
Tables QA6-1 and QA6-2 (see below) to obtain your solution.
%3D
Transcribed Image Text:Question A6 An ammonia condenser uses a shell-and-tube heat exchanger. Ammonia enters the shell (in its saturated vapour state) at 60°C, and the overall heat transfer coefficient, U, is 1000 W/m?K. If the inlet and exit water temperatures are 20°C and 40°C, respectively, and the heat exchanger effectiveness is 60%, determine the area required for a heat transfer of 300 kW. By how much would the heat transfer decrease if the water flow rate was reduced by 50% while keeping the heat exchanger area and U the same? Use cp,water = 4.179 kJ/kgK and Tables QA6-1 and QA6-2 (see below) to obtain your solution. %3D
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The