A1)Use the Law of Sines to solve (if possible) the triangle. If two solutions exist, find both. Round your answers to two decimal places. (If a triangle is not possible, enter IMPOSSIBLE in each corresponding answer blank.) A = 54°,  a = 12.3,  b = 15.2 Case 1                                Case 2 B=                                       B= C=                                       C= c=                                        c=

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question

A1)Use the Law of Sines to solve (if possible) the triangle. If two solutions exist, find both. Round your answers to two decimal places. (If a triangle is not possible, enter IMPOSSIBLE in each corresponding answer blank.)

A = 54°,  a = 12.3,  b = 15.2
Case 1                                Case 2
B=                                       B=
C=                                       C=
c=                                        c=
 
A2)Find the area of the triangle. Round your answer to one decimal place.
B = 116°,    C = 29°,    a = 52
 
A3)A tree grows at an angle of 2° from the vertical due to prevailing winds. At a point d = 42 meters from the base of the tree, the angle of elevation to the top of the tree is a = 31° (see figure).
Find the height h of the tree. (Round your answer to one decimal place.)
H=
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Law of Cosines
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,