A 1700 kg car is driving down a highway at a constant velocity when a deer jumps out onto the road 59.6 m ahead. The coefficient of friction between the car tires and the road is 0.21.    Calculate the initial velocity of the car if it is able to stop just before hitting the deer. (You do not need to account for reaction time of the driver. Assuming the car is breaking the entire 59.6 m distance and that friction is the only force stopping the car.)  v0 =          m/s

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter4: The Laws Of Motion
Section4.4: Newton’s Second Law
Problem 4.3QQ: You push an object, initially at rest, across a frictionless floor with a constant force for a time...
icon
Related questions
Question

A 1700 kg car is driving down a highway at a constant velocity when a deer jumps out onto the road 59.6 m ahead. The coefficient of friction between the car tires and the road is 0.21.

   Calculate the initial velocity of the car if it is able to stop just before hitting the deer. (You do not need to account for reaction time of the driver. Assuming the car is breaking the entire 59.6 m distance and that friction is the only force stopping the car.) 
v0 =          m/s
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning