a. Given n items, where each item has a weight and a value, and a knapsack that can carry at most W You are expected to fill in the knapsack with a subset of items in order to maximize the total value without exceeding the weight limit. For instance, if n = 6 and items = {(A, 10, 40), (B, 50, 30), (C, 40, 80), (D, 20, 60), (E, 40, 10), (F, 10, 60)} where each entry is represented as (itemIdi, weighti, valuei). Use greedy algorithm to solve the fractional knapsack problem.
a. Given n items, where each item has a weight and a value, and a knapsack that can carry at most W You are expected to fill in the knapsack with a subset of items in order to maximize the total value without exceeding the weight limit. For instance, if n = 6 and items = {(A, 10, 40), (B, 50, 30), (C, 40, 80), (D, 20, 60), (E, 40, 10), (F, 10, 60)} where each entry is represented as (itemIdi, weighti, valuei). Use greedy
b. Given an array of n numbers, write a java or python program to find the k largest numbers using a comparison-based algorithm. We are not interested in the relative order of the k numbers and assuming that (i) k is a small constant (e.g., k = 5) independent of n, and (ii) k is a constant fraction of n (e.g., k = n/4). Provide the Big-Oh characterization of your algorithm.

Trending now
This is a popular solution!
Step by step
Solved in 2 steps









