Consider the problem of making change for n cents using the fewest number of coins. Assume that we live in a country where coins come in k dierent denominations c1, c2, . . . , ck, such that the coin values are positive integers, k ≥ 1, and c1 = 1, i.e., there are pennies, so there is a solution for every value of n. For example, in case of the US coins, k = 4, c1 = 1, c2 = 5, c3 = 10, c4 = 25, i.e., there are pennies, nickels, dimes, and quarters. To give optimal change in the US for n cents, it is sufficient to pick as many quarters as possible, then as many dimes as possible, then as many nickels as possible, and nally give the rest in pennies. Prove that the coin changing problem exhibits optimal substructure. Design a recursive backtracking (brute-force) algorithm that returns the minimum number of coins needed to make change for n cents for any set of k different coin denominations. Write down the pseudocode and prove that your algorithm is correct.
Consider the problem of making change for n cents using the fewest number of coins. Assume that we live in a country where coins come in k dierent denominations c1, c2, . . . , ck, such that the coin values are positive integers, k ≥ 1, and c1 = 1, i.e., there are pennies, so there is a solution for every value of n. For example, in case of the US coins, k = 4, c1 = 1, c2 = 5, c3 = 10, c4 = 25, i.e., there are pennies, nickels, dimes, and quarters. To give optimal change in the US for n cents, it is sufficient to pick as many quarters as possible, then as many dimes as possible, then as many nickels as possible, and nally give the rest in pennies.
Prove that the coin changing problem exhibits optimal substructure. Design a recursive backtracking (brute-force)
Step by step
Solved in 1 steps