Consider the problem of making change for n cents using the fewest number of coins. Assume that we live in a country where coins come in k dierent denominations c1, c2, . . . , ck, such that the coin values are positive integers, k ≥ 1, and c1 = 1, i.e., there are pennies, so there is a solution for every value of n. For example, in case of the US coins, k = 4, c1 = 1, c2 = 5, c3 = 10, c4 = 25, i.e., there are pennies, nickels, dimes, and quarters. To give optimal change in the US for n cents, it is sufficient to pick as many quarters as possible, then as many dimes as possible, then as many nickels as possible, and nally give the rest in pennies. Prove that the coin changing problem exhibits optimal substructure. Design a recursive backtracking (brute-force) algorithm that returns the minimum number of coins needed to make change for n cents for any set of k different coin denominations. Write down the pseudocode and prove that your algorithm is correct.

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Consider the problem of making change for n cents using the fewest number of coins. Assume that we live in a country where coins come in k dierent denominations c1, c2, . . . , ck, such that the coin values are positive integers, k ≥ 1, and c1 = 1, i.e., there are pennies, so there is a solution for every value of n. For example, in case of the US coins, k = 4, c1 = 1, c2 = 5, c3 = 10, c4 = 25, i.e., there are pennies, nickels, dimes, and quarters. To give optimal change in the US for n cents, it is sufficient to pick as many quarters as possible, then as many dimes as possible, then as many nickels as possible, and nally give the rest in pennies.

Prove that the coin changing problem exhibits optimal substructure. Design a recursive backtracking (brute-force) algorithm that returns the minimum number of coins needed to make change for n cents for any set of k different coin denominations. Write down the pseudocode and prove that your algorithm is correct.

Expert Solution
steps

Step by step

Solved in 1 steps

Blurred answer
Knowledge Booster
Topological Sort
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education