a. Consider f(x) i. lim f(x) = x →0¯ ii. lim f(x) = +0+* = iii. lim f(x) = x→0 iv. f(0) = = v. lim f(x) = x→9 vi. lim f(x) = x→9+ vii. lim f(x) = x→9 viii. f(9) = ix. lim f(x) = x-00 X. lim f(x) x-100 8a3+52 x² 9x Complete the following equations. = Preview Preview Preview Preview Preview Preview Preview Preview Preview Preview b. Based on your work in part a, on what interval(s) is f(x) continuous? Write your answer in interval notation. If you include multiple intervals, use u to denote union. Preview

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

help me with a and b please

a. Consider f(x) =
=
i. lim f(x)
_0x
ii. lim f(x) =
x→0+
iii. lim f(x)
x→0
iv. f(0) =
=
v. lim f(x) =
x →9
vi. lim f(x)
x →9+
vii. lim ƒ(x)
x→9
viii. f(9)
=
=
=
=
00—←1
=
ix. lim f(x) =
x→00
8x3+52
x² - 9x
X. lim_f(x) =
Complete the following equations.
Preview
Preview
Preview
Preview
Preview
Preview
Preview
Preview
Preview
Preview
b. Based on your work in part a, on what interval(s) is f(x) continuous?
Write your answer in interval notation. If you include multiple intervals, use u to denote union.
Preview
Transcribed Image Text:a. Consider f(x) = = i. lim f(x) _0x ii. lim f(x) = x→0+ iii. lim f(x) x→0 iv. f(0) = = v. lim f(x) = x →9 vi. lim f(x) x →9+ vii. lim ƒ(x) x→9 viii. f(9) = = = = 00—←1 = ix. lim f(x) = x→00 8x3+52 x² - 9x X. lim_f(x) = Complete the following equations. Preview Preview Preview Preview Preview Preview Preview Preview Preview Preview b. Based on your work in part a, on what interval(s) is f(x) continuous? Write your answer in interval notation. If you include multiple intervals, use u to denote union. Preview
Expert Solution
steps

Step by step

Solved in 8 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,