(a) Write i in the coordinates of the basis {T1, ū2, v3}. (b) Find Ak (in the standard coordinates) and the coordinates of Aki in the basis {u1, 2, 03} for k = 1,2, 3, 4, 5. (c) Find lim A*ï, and compare your answer to the vectors u1, 02, 03. Com- k→∞ ment on why the limit is what it is.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Linear algebra question 

Write explanation too if possible

Can solve using online calculators 

Picture of the problem is attached

**Part 1: Eigenvectors and Eigenvalues**

Suppose \( A \) is a \( 3 \times 3 \) matrix with the following eigenvectors and eigenvalues.

\[
\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \text{ with eigenvalue } \lambda = 1,
\]

\[
\vec{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, \text{ with eigenvalue } \lambda = 0.5,
\]

\[
\vec{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \text{ with eigenvalue } \lambda = 0.5,
\]

(a) Write \( \vec{x} \) in the coordinates of the basis \(\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}\).

\[
\vec{x} = \begin{bmatrix} 7 \\ 5 \\ 4 \end{bmatrix}
\]

(b) Find \( A^k\vec{x} \) (in the standard coordinates) and the coordinates of \( A^k\vec{x} \) in the basis \(\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}\) for \( k = 1, 2, 3, 4, 5 \).

(c) Find \( \lim_{k \to \infty} A^k\vec{x} \), and compare your answer to the vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3\). Comment on why the limit is what it is.
Transcribed Image Text:**Part 1: Eigenvectors and Eigenvalues** Suppose \( A \) is a \( 3 \times 3 \) matrix with the following eigenvectors and eigenvalues. \[ \vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \text{ with eigenvalue } \lambda = 1, \] \[ \vec{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, \text{ with eigenvalue } \lambda = 0.5, \] \[ \vec{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \text{ with eigenvalue } \lambda = 0.5, \] (a) Write \( \vec{x} \) in the coordinates of the basis \(\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}\). \[ \vec{x} = \begin{bmatrix} 7 \\ 5 \\ 4 \end{bmatrix} \] (b) Find \( A^k\vec{x} \) (in the standard coordinates) and the coordinates of \( A^k\vec{x} \) in the basis \(\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}\) for \( k = 1, 2, 3, 4, 5 \). (c) Find \( \lim_{k \to \infty} A^k\vec{x} \), and compare your answer to the vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3\). Comment on why the limit is what it is.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,