A wooden ballistic pendulum, with a mass equal to 10 kg, suspended by a wire 1 meter long, is hit at t=0 s by a 10 gram bullet, traveling at a speed of 300 m/s, which becomes stuck in it (Use g=9.8m/s2). With respect to the question, consider the following statements. I) The expression that allows to calculate the angle \theta (in rad) between the wire and the vertical as a function of time is \theta(t)=0.096 \sin(3.13\; t). II) The first instant of time in which the pendulum reaches its maximum height is t=1s. III) The maximum angular acceleration is approximately 0.94 rad/s2. It is correct what is stated in Choose an option: I, II and III. I, just. I and II only. II and III only.
A wooden ballistic pendulum, with a mass equal to 10 kg, suspended by a wire 1 meter long, is hit at t=0 s by a 10 gram bullet, traveling at a speed of 300 m/s, which becomes stuck in it (Use g=9.8m/s2).
With respect to the question, consider the following statements.
I) The expression that allows to calculate the angle \theta (in rad) between the wire and the vertical as a function of time is \theta(t)=0.096 \sin(3.13\; t).
II) The first instant of time in which the pendulum reaches its maximum height is t=1s.
III) The maximum angular acceleration is approximately 0.94 rad/s2.
It is correct what is stated in
Choose an option:
I, II and III.
I, just.
I and II only.
II and III only.
I and III only.
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)