A W 310 X 52 steel beam is subjected to a point load P = 56 kN and a transverse load V = 15kN at B. The beam has length L = 2 m. See the table for beam properties. (Assume that the structure behaves linearly elastically and that the stresses caused by two or more loads may be superimposed to obtain the resultant stresses acting at a point. Consider both in-plane and out-of-plane shear stresses unless otherwise specified. (Do not use rounded intermediate values in your calculations) (a) Calculate the principal normal stresses and the maximum shear stress on element D located on the web right below the top flange and near the fixed support. Neglect the weight of the beam. (Enter your answers in MPa. For the normal stresses, use the deformation sign convention. For the shear stress, enter the magnitude.) σ1 =                            MPa

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%

Mechanics of Deformable Bodies

Please write the complete solutions and Legibly. Thumbs up will given!

A W 310 X 52 steel beam is subjected to a point load P = 56 kN and a transverse load V = 15kN at B. The beam has length L = 2 m. See the table for beam properties. (Assume that the structure behaves linearly elastically and that the stresses caused by two or more loads may be superimposed to obtain the resultant stresses acting at a point. Consider both in-plane and out-of-plane shear stresses unless otherwise specified. (Do not use rounded intermediate values in your calculations)

(a) Calculate the principal normal stresses and the maximum shear stress on element D located on the web right below the top flange and near the fixed support. Neglect the weight of the beam. (Enter your answers in MPa. For the normal stresses, use the deformation sign convention. For the shear stress, enter the magnitude.)

σ                           MPa

σ=                            MPa

τmax =                            MPa

(b) Calculate the principal normal stresses and the maximum shear stress on an element at centroid C (see figure). Neglect the weight of the beam. (Enter your answers in MPa. For the normal stresses, use the deformation sign convention. For the shear stress, enter the magnitude.)

σ                           MPa

σ                           MPa

τmax                            MPa

Properties of Wide-Flange Sections (W Shapes) SI Units (Abridged List)
Mass
Flange
per
Designation Meter Area Depth
mm² mm
kg
W 760 x 314 314 40100 785
W 760 x 196
196 25100
770
W 610 x 241 241
W 610 x 140
140
W 460 x 177 177
W 460 x 106
106
W 410 x 149
W 410 x 114
W 410 X 85
W410 x 46.1
W 360 x 179
W 360 x 122
W 360 x 79
W 360 x 39
W 310 X 129
W 310 x 74
W 310 X 52
W 310 x 21
W 250 × 89
W 250 x 67
W 250 x 44.8
W 250 x 17.9
Web
Thick-
ness Width
mm mm
19.7
15.6
30800 635 17.9
330
17900 617 13.1 230
22600 483 16.6 287
13400 470 12.6 194
149 19000 432
114 14600 419
85.0 10800 417 10.9
46.1 5890 404
6.99
129 16500 318
74.0 9420 310
52.0 6650 318
21.0 2680 302
384
33.5
267 25.4
14.9
264
11.6 262
181
140
179
122
15500 363 13.0
79.0 10100 353 9.40
39.0 4960
353
6.48
22800 368 15.0 373
257
205
128
13.1 307
9.40 205
7.62 167
5.08
101
89.0 11400 259 10.7 257
8.89 204
67.0 8580
44.8
17.9
257
5700 267
7.62 148
2280
251
4.83
101
W 200 X 52
52.0 6650
206
W 200 X 41.7
41.7 5320
205
31.3 3970 210
W 200 x 31.3
6.35 134
W 200 X 22.5 22.5 2860 206 6.22 102
Note: Axes 1-1 and 2-2 are principal centroidal axes.
Thick-
ness I
S
r
mm x 10 mm x 10³ mm³ mm
31.0
22.2
26.9
20.6
25.0
19.3
18.2
11.2
23.9
21.7
16.8
10.7
20.6
16.3
13.2
5.72
17.3
15.7
13.0
5.33
7.87 204
12.6
7.24 166 11.8
10.2
8.00
4290
2400
2150
1120
912
487
620
462
316
156
574
367
225
102
308
163
119
36.9
142
103
70.8
22.4
Axis 1-1
52.9
40.8
31.3
20.0
10900 328
6230 310
6780 264
3640 251
3790 201
2080 191
2870 180
2200 178
1510 171
773
163
3110
158
2020 154
1270 150
578 144
1930
137
1050 132
747
133
244 117
1090 112
805 110
531
179
$11
398 87.6
298
88.6
193 83.6
I
S
x 105mm x 10³ mm³ mm
1640
88.6
610
57.2
315
81.6
184
45.4
105
25.1
77.4
57.4
17.9
5.16
206
61.6
24.0
3.71
100
23.4
10.2
0.982
48.3
22.2
6.95
0.907
99.1
89.2 17.7
9.03
4.07
1.42
Axis 2-2
1120
393
736
259
585
441
198
73.6
1110
480
234
58.2
651
228
122
19.5
377
218
94.2
18.0
174
109
77.5
50.3
68.3
43.2
63.8
62.7
40.6
29.7
95.0
63.0
48.8
27.4
78.0
49.8
39.1
19.1
65.3
51.1
34.8
19.9
$1.6
41.1
60.8
32.0
27.9 22.3
Transcribed Image Text:Properties of Wide-Flange Sections (W Shapes) SI Units (Abridged List) Mass Flange per Designation Meter Area Depth mm² mm kg W 760 x 314 314 40100 785 W 760 x 196 196 25100 770 W 610 x 241 241 W 610 x 140 140 W 460 x 177 177 W 460 x 106 106 W 410 x 149 W 410 x 114 W 410 X 85 W410 x 46.1 W 360 x 179 W 360 x 122 W 360 x 79 W 360 x 39 W 310 X 129 W 310 x 74 W 310 X 52 W 310 x 21 W 250 × 89 W 250 x 67 W 250 x 44.8 W 250 x 17.9 Web Thick- ness Width mm mm 19.7 15.6 30800 635 17.9 330 17900 617 13.1 230 22600 483 16.6 287 13400 470 12.6 194 149 19000 432 114 14600 419 85.0 10800 417 10.9 46.1 5890 404 6.99 129 16500 318 74.0 9420 310 52.0 6650 318 21.0 2680 302 384 33.5 267 25.4 14.9 264 11.6 262 181 140 179 122 15500 363 13.0 79.0 10100 353 9.40 39.0 4960 353 6.48 22800 368 15.0 373 257 205 128 13.1 307 9.40 205 7.62 167 5.08 101 89.0 11400 259 10.7 257 8.89 204 67.0 8580 44.8 17.9 257 5700 267 7.62 148 2280 251 4.83 101 W 200 X 52 52.0 6650 206 W 200 X 41.7 41.7 5320 205 31.3 3970 210 W 200 x 31.3 6.35 134 W 200 X 22.5 22.5 2860 206 6.22 102 Note: Axes 1-1 and 2-2 are principal centroidal axes. Thick- ness I S r mm x 10 mm x 10³ mm³ mm 31.0 22.2 26.9 20.6 25.0 19.3 18.2 11.2 23.9 21.7 16.8 10.7 20.6 16.3 13.2 5.72 17.3 15.7 13.0 5.33 7.87 204 12.6 7.24 166 11.8 10.2 8.00 4290 2400 2150 1120 912 487 620 462 316 156 574 367 225 102 308 163 119 36.9 142 103 70.8 22.4 Axis 1-1 52.9 40.8 31.3 20.0 10900 328 6230 310 6780 264 3640 251 3790 201 2080 191 2870 180 2200 178 1510 171 773 163 3110 158 2020 154 1270 150 578 144 1930 137 1050 132 747 133 244 117 1090 112 805 110 531 179 $11 398 87.6 298 88.6 193 83.6 I S x 105mm x 10³ mm³ mm 1640 88.6 610 57.2 315 81.6 184 45.4 105 25.1 77.4 57.4 17.9 5.16 206 61.6 24.0 3.71 100 23.4 10.2 0.982 48.3 22.2 6.95 0.907 99.1 89.2 17.7 9.03 4.07 1.42 Axis 2-2 1120 393 736 259 585 441 198 73.6 1110 480 234 58.2 651 228 122 19.5 377 218 94.2 18.0 174 109 77.5 50.3 68.3 43.2 63.8 62.7 40.6 29.7 95.0 63.0 48.8 27.4 78.0 49.8 39.1 19.1 65.3 51.1 34.8 19.9 $1.6 41.1 60.8 32.0 27.9 22.3
D-
A
Z
L
y
C
D
h₁/2
B
i
Transcribed Image Text:D- A Z L y C D h₁/2 B i
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Slope and Deflection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY