a virus, using a wave of wavelength 5.00 nm. (a) If you use light of this wavelength, what would be the energy (in eV) of a single photon? (b) If you use an electron of this wavelength, what would be its kinetic energy (in ev)? Is it now clear why matter waves (such as in the electron microscope) are often preferable to electromagnetic waves for studying microscopic objects?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
52. • Structure of a virus. To investigate the structure of
BIO extremely small objects, such as viruses, the wavelength of the
probing wave should be about one-tenth the size of the object
for sharp images. But as the wavelength gets shorter, the
energy of a photon of light gets greater and could damage or
destroy the object being studied. One alternative is to use elec-
tron matter waves instead of light. Viruses vary considerably in
size, but 50 nm is not unusual. Suppose you want to study such
a virus, using a wave of wavelength 5.00 nm. (a) If you use
light of this wavelength, what would be the energy (in eV) of a
single photon? (b) If you use an electron of this wavelength,
what would be its kinetic energy (in eV)? Is it now clear why
matter waves (such as in the electron microscope) are often
preferable to electromagnetic waves for studying microscopic
objects?
Transcribed Image Text:52. • Structure of a virus. To investigate the structure of BIO extremely small objects, such as viruses, the wavelength of the probing wave should be about one-tenth the size of the object for sharp images. But as the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. One alternative is to use elec- tron matter waves instead of light. Viruses vary considerably in size, but 50 nm is not unusual. Suppose you want to study such a virus, using a wave of wavelength 5.00 nm. (a) If you use light of this wavelength, what would be the energy (in eV) of a single photon? (b) If you use an electron of this wavelength, what would be its kinetic energy (in eV)? Is it now clear why matter waves (such as in the electron microscope) are often preferable to electromagnetic waves for studying microscopic objects?
Expert Solution
steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Knowledge Booster
Compton effect
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON