A vapor-compression refrigeration system circulates refrigerant 134a at a rate of 0.15 kg/s. The refrigerant enters the compressor at -10 degrees Celcius and 100 kPa, and exits the compressor at 800 kPa. The isentropic efficiency of the compressor is 76%. Pressure drop through the condenser and evaporator are negligible. The refrigerant exits the condenser at 30 degrees Celcius and 800 kPa. Ignoring the heat transfer between the compressor and its surroundings, determine: The rate at which heat energy is removed from the refrigerated space in kW. The coefficient of perfromance.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

A vapor-compression refrigeration system circulates refrigerant 134a at a rate of 0.15 kg/s. The refrigerant enters the compressor at -10 degrees Celcius and 100 kPa, and exits the compressor at 800 kPa. The isentropic efficiency of the compressor is 76%. Pressure drop through the condenser and evaporator are negligible. The refrigerant exits the condenser at 30 degrees Celcius and 800 kPa. Ignoring the heat transfer between the compressor and its surroundings, determine:

  • The rate at which heat energy is removed from the refrigerated space in kW.
  • The coefficient of perfromance.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 9 steps with 5 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY