(a) Use the y-momentum equation to show that the pressure gradient across the boundary layer is approximately zero i.e. - 0. Assume the boundary layer to be a two-dimensional ду steady and incompressible flow. Neglect gravitational forces. State clearly all assumptions made. Use the Bernoulli's equation to prove that the pressure difference is given by (b) P2-P1 = -4pU? for a fluid with constant density p flowing from point 1 to point 2 where pi, Ui, A1 are the pressure, velocity and flow cross-section area at point 1 and p2, U2, A2 are the pressure, velocity and flow cross-section area at point 2 respectively. A1 A2 The ratio of the cross-section area = 3.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
(a)
Use the y-momentum equation to show that the pressure
gradient across the boundary layer is approximately zero i.e.
= 0 . Assume the boundary layer to be a two-dimensional
ду
steady and incompressible flow. Neglect gravitational
forces. State clearly all assumptions made.
Use the Bernoulli's equation to prove that the pressure
difference is given by
(b)
P2-P1 = -4pU?
for a fluid with constant density p flowing from point 1 to
point 2 where pi, U1, A1 are the pressure, velocity and flow
cross-section area at point 1 and p2, U2, A2 are the pressure,
velocity and flow cross-section area at point 2 respectively.
The ratio of the cross-section area
A1
= 3.
Transcribed Image Text:(a) Use the y-momentum equation to show that the pressure gradient across the boundary layer is approximately zero i.e. = 0 . Assume the boundary layer to be a two-dimensional ду steady and incompressible flow. Neglect gravitational forces. State clearly all assumptions made. Use the Bernoulli's equation to prove that the pressure difference is given by (b) P2-P1 = -4pU? for a fluid with constant density p flowing from point 1 to point 2 where pi, U1, A1 are the pressure, velocity and flow cross-section area at point 1 and p2, U2, A2 are the pressure, velocity and flow cross-section area at point 2 respectively. The ratio of the cross-section area A1 = 3.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Kinematics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY