(a) Use the reduction formula sin"(x) dx = - 1 cos(x) sin" - '(x) + n - 1 sin" - 2(x) dx, where n 2 2 is an integer to determine which of the following reduction formulas is correct. n/2 x/2 sinn + 1(x) dx Jo n + 2 sin"(x) dx = n - 1 sin"(x) dx = sin" - 2(x) dx n - 2 x/2 O sin"(x) dx = sin" - 1(x) dx n/2 n + 1 sin"(x) dx = sin" + 2(x) dx Jo (b) Use part (a) to evaluate the following. sin3(x) dx = - 1/2 sin (x) dx = (c) Use part (a) to determine which of the following is correct for odd powers of sine. 2·4. 6...· 2n 3. 5. 7... · (2n + 1) sin2n + (x) dx = r/2 2· 4. 6.... 2n sin 2n (x) dx = 1· 3: 5. ...n 7/2 1·3· 5· .. .n sin 2n . + 1(x) dx = 2·4. 6.... 2n 3.5·7...• (2n + 1) sin2n + 1(x) dx 2·4. 6. ..· 2n
(a) Use the reduction formula sin"(x) dx = - 1 cos(x) sin" - '(x) + n - 1 sin" - 2(x) dx, where n 2 2 is an integer to determine which of the following reduction formulas is correct. n/2 x/2 sinn + 1(x) dx Jo n + 2 sin"(x) dx = n - 1 sin"(x) dx = sin" - 2(x) dx n - 2 x/2 O sin"(x) dx = sin" - 1(x) dx n/2 n + 1 sin"(x) dx = sin" + 2(x) dx Jo (b) Use part (a) to evaluate the following. sin3(x) dx = - 1/2 sin (x) dx = (c) Use part (a) to determine which of the following is correct for odd powers of sine. 2·4. 6...· 2n 3. 5. 7... · (2n + 1) sin2n + (x) dx = r/2 2· 4. 6.... 2n sin 2n (x) dx = 1· 3: 5. ...n 7/2 1·3· 5· .. .n sin 2n . + 1(x) dx = 2·4. 6.... 2n 3.5·7...• (2n + 1) sin2n + 1(x) dx 2·4. 6. ..· 2n
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![(a) Use the reduction formula
1
n – 1
sin"(x) dx
- cos(x) sin" - (x) +
sin" - 2(x) dx, where n 2 2 is an integer
in
in
to determine which of the following reduction formulas is correct.
.띠2
n + 2
·피2
sin"(x) dx
sin" + 1(x) dx
n
rT/2
1
.피2
n -
sin"(x) dx
sin" - 2(x) dx
in
T/2
sin" - 1(x) dx
Jo
"피2
n -
2
O sin"(x) dx =
.피/2
sin" + 2(x) dx
rT/2
[" sin"(x) dx
n + 1
(b) Use part (a) to evaluate the following.
rT/2
sin3(x) dx =
T/2
sin (x) dx
(c) Use part (a) to determine which of the following is correct for odd powers of sine.
T/2
2·4
• 6
•.. 2n
1(x) dx
%3D
sin 2n + 1.
3: 5
• 7.
(2n + 1)
·띠2
2:4: 6
2n
•.
sin2n + 1(x) dx
1: 3
5· ... n
.피2
1: 3
5 • .. • n
sin2n + 1,
1(x) dx
• 4
6.
2n
* T/2
3 : 5: 7
(2n + 1)
..
sin 2n + 1
(x) dx
%3D
2· 4
6 . ... 2n](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3bb7c04b-31f7-4ac4-b04e-9c07278fceb0%2Fec526507-5ad6-49d5-a010-b0c966f0c3bb%2Fz11gxhw_processed.png&w=3840&q=75)
Transcribed Image Text:(a) Use the reduction formula
1
n – 1
sin"(x) dx
- cos(x) sin" - (x) +
sin" - 2(x) dx, where n 2 2 is an integer
in
in
to determine which of the following reduction formulas is correct.
.띠2
n + 2
·피2
sin"(x) dx
sin" + 1(x) dx
n
rT/2
1
.피2
n -
sin"(x) dx
sin" - 2(x) dx
in
T/2
sin" - 1(x) dx
Jo
"피2
n -
2
O sin"(x) dx =
.피/2
sin" + 2(x) dx
rT/2
[" sin"(x) dx
n + 1
(b) Use part (a) to evaluate the following.
rT/2
sin3(x) dx =
T/2
sin (x) dx
(c) Use part (a) to determine which of the following is correct for odd powers of sine.
T/2
2·4
• 6
•.. 2n
1(x) dx
%3D
sin 2n + 1.
3: 5
• 7.
(2n + 1)
·띠2
2:4: 6
2n
•.
sin2n + 1(x) dx
1: 3
5· ... n
.피2
1: 3
5 • .. • n
sin2n + 1,
1(x) dx
• 4
6.
2n
* T/2
3 : 5: 7
(2n + 1)
..
sin 2n + 1
(x) dx
%3D
2· 4
6 . ... 2n
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning