A UPDATES AVAILABLE Do you want to install the updates now? Table 2 Half-Reaction Standard Reduction Potential, E (V) [Zn(OH),]- + 2 e Zn + 4 OH -1.20 Zn(OH), + 2e- → Zn + 2 OH -1.25 HgO + H2O + 2 e Hg + 20H +0.10 O2 + 2 H20 + 4e +4OH +0.40 Pacemakers are electronic devices that help regulate the heart rate. Currently, lithium-iodine cells are commonly used to power pacemakers and have replaced zinc-mercury cells. Table 1 provides the operating cell potential, E, for each cell. Table 2 provides the standard reduction potentials for several half-reactions related to zinc-mercury and zinc-air cells. The use of zinc-mercury cells in hearing aids has been replaced by zinc-air cells that operate using the oxidation of Zn by O, from the air, generating a potential of +1.60 V. Table 2 provides the standard reduction potentials for the half-reactions used in zinc-mercury and zinc-air cells. Which of the following best explains the modification to the cell design that is mostly responsible for the difference in standard cell potentials for zinc-mercury and zinc-air cells? The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically more favorable reduction of O, compared to A HgO. The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the greater number of moles of e required to reduce O, compared to в HgO. The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically less favorable reduction of O, compared to HgO. The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the greater number of moles of hydroxide ions required to reduce D [Zn(OH),- compared to Zn(OH),.
A UPDATES AVAILABLE Do you want to install the updates now? Table 2 Half-Reaction Standard Reduction Potential, E (V) [Zn(OH),]- + 2 e Zn + 4 OH -1.20 Zn(OH), + 2e- → Zn + 2 OH -1.25 HgO + H2O + 2 e Hg + 20H +0.10 O2 + 2 H20 + 4e +4OH +0.40 Pacemakers are electronic devices that help regulate the heart rate. Currently, lithium-iodine cells are commonly used to power pacemakers and have replaced zinc-mercury cells. Table 1 provides the operating cell potential, E, for each cell. Table 2 provides the standard reduction potentials for several half-reactions related to zinc-mercury and zinc-air cells. The use of zinc-mercury cells in hearing aids has been replaced by zinc-air cells that operate using the oxidation of Zn by O, from the air, generating a potential of +1.60 V. Table 2 provides the standard reduction potentials for the half-reactions used in zinc-mercury and zinc-air cells. Which of the following best explains the modification to the cell design that is mostly responsible for the difference in standard cell potentials for zinc-mercury and zinc-air cells? The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically more favorable reduction of O, compared to A HgO. The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the greater number of moles of e required to reduce O, compared to в HgO. The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically less favorable reduction of O, compared to HgO. The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the greater number of moles of hydroxide ions required to reduce D [Zn(OH),- compared to Zn(OH),.
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![A apclassroom.collegeboard.org
X
CollegeBoard
AP Classroom
O LOW BATTERY
Unit 9 Progress Check: MCQ
Your Mac will sleep soon unless plugged in
power outlet.
A UPDATES AVAILABLE
Do you want to install the updates now?
Table 2
Half-Reaction
Standard Reduction Potential, E' (V)
[Zn(OH),]?- + 2 e- → Zn + 4 OH-
-1.20
Zn(OH), + 2e-→ Zn + 2 OH
-1.25
HgO + H2O + 2 e¯
→ Hg + 2OH
+0.10
O2 + 2 H20+4 e → 4 OH
+0.40
Pacemakers are electronic devices that help regulate the heart rate. Currently, lithium-iodine cells are commonly used to power pacemakers and have replaced zinc-mercury cells. Table 1 provides the operating
cell potential, E, for each cell. Table 2 provides the standard reduction potentials for several half-reactions related to zinc-mercury and zinc-air cells.
The use of zinc-mercury cells in hearing aids has been replaced by zinc-air cells that operate using the oxidation of Zn by O, from the air, generating a potential of +1.60 V. Table 2 provides the standard
reduction potentials for the half-reactions used in zinc-mercury and zinc-air cells. Which of the following best explains the modification to the cell design that is mostly responsible for the difference in standard
cell potentials for zinc-mercury and zinc-air cells?
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically more favorable reduction of O, compared to
A
HgO.
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the greater number of moles of e required to reduce O, compared to
B
HgO.
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically less favorable reduction of Oz compared to
HgO.
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the greater number of moles of hydroxide ions required to reduce
D
[Zn(OH),]- compared to Zn(OH),.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9f56bcfa-adb1-4fec-95f0-7d07974630fd%2Fcdab1948-3e9e-4e0d-b62c-4baae7f734cf%2Few262us_processed.jpeg&w=3840&q=75)
Transcribed Image Text:A apclassroom.collegeboard.org
X
CollegeBoard
AP Classroom
O LOW BATTERY
Unit 9 Progress Check: MCQ
Your Mac will sleep soon unless plugged in
power outlet.
A UPDATES AVAILABLE
Do you want to install the updates now?
Table 2
Half-Reaction
Standard Reduction Potential, E' (V)
[Zn(OH),]?- + 2 e- → Zn + 4 OH-
-1.20
Zn(OH), + 2e-→ Zn + 2 OH
-1.25
HgO + H2O + 2 e¯
→ Hg + 2OH
+0.10
O2 + 2 H20+4 e → 4 OH
+0.40
Pacemakers are electronic devices that help regulate the heart rate. Currently, lithium-iodine cells are commonly used to power pacemakers and have replaced zinc-mercury cells. Table 1 provides the operating
cell potential, E, for each cell. Table 2 provides the standard reduction potentials for several half-reactions related to zinc-mercury and zinc-air cells.
The use of zinc-mercury cells in hearing aids has been replaced by zinc-air cells that operate using the oxidation of Zn by O, from the air, generating a potential of +1.60 V. Table 2 provides the standard
reduction potentials for the half-reactions used in zinc-mercury and zinc-air cells. Which of the following best explains the modification to the cell design that is mostly responsible for the difference in standard
cell potentials for zinc-mercury and zinc-air cells?
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically more favorable reduction of O, compared to
A
HgO.
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the greater number of moles of e required to reduce O, compared to
B
HgO.
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically less favorable reduction of Oz compared to
HgO.
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the greater number of moles of hydroxide ions required to reduce
D
[Zn(OH),]- compared to Zn(OH),.
![apclassroom.collegeboard.org
| LOW BATTERY
CollegeBoard
AP Classroom
Unit 9 Progress Check: MCQ
Your Mac will sleep soon unless plugged
power outlet.
11
12
A UPDATES AVAILABLE
21
Do you want to install the updates now?
Cell Type
Operating CelI Potential for Commercial Batteries, E (V)
Lithium-iodine
+2.80
Zinc-mercury
+1.35
Table 2
Half-Reaction
Standard Reduction Potential, E (V)
[Zn(OH),] + 2 e → Zn + 4 OH
-1.20
Zn(OH), + 2e → Zn + 2 OH
-1.25
HgO + H2O + 2 e¯ → Hg + 2 OH
+0.10
O2 + 2 H20 + 4 e¯ → 4 OH
+0.40
Pacemakers are electronic devices that help regulate the heart rate. Currently, lithium-iodine cells are commonly used to power pacemakers and have replaced zinc-mercury cells. Table 1 provides the operating
cell potential, E, for each cell. Table 2 provides the standard reduction potentials for several half-reactions related to zinc-mercury and zinc-air cells.
The use of zinc-mercury cells in hearing aids has been replaced by zinc-air cells that operate using the oxidation of Zn by O, from the air, generating a potential of +1.60 V. Table 2 provides the standard
reduction potentials for the half-reactions used in zinc-mercury and zinc-air cells. Which of the following best explains the modification to the cell design that is mostly responsible for the difference in standard
cell potentials for zinc-mercury and zinc-air cells?
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically more favorable reduction of O, compared to
HgO.
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the greater number of moles of e required to reduce O, compared to
HgO.
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically less favorable reduction of O, compared to
HgO.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9f56bcfa-adb1-4fec-95f0-7d07974630fd%2Fcdab1948-3e9e-4e0d-b62c-4baae7f734cf%2Fttp6ls_processed.jpeg&w=3840&q=75)
Transcribed Image Text:apclassroom.collegeboard.org
| LOW BATTERY
CollegeBoard
AP Classroom
Unit 9 Progress Check: MCQ
Your Mac will sleep soon unless plugged
power outlet.
11
12
A UPDATES AVAILABLE
21
Do you want to install the updates now?
Cell Type
Operating CelI Potential for Commercial Batteries, E (V)
Lithium-iodine
+2.80
Zinc-mercury
+1.35
Table 2
Half-Reaction
Standard Reduction Potential, E (V)
[Zn(OH),] + 2 e → Zn + 4 OH
-1.20
Zn(OH), + 2e → Zn + 2 OH
-1.25
HgO + H2O + 2 e¯ → Hg + 2 OH
+0.10
O2 + 2 H20 + 4 e¯ → 4 OH
+0.40
Pacemakers are electronic devices that help regulate the heart rate. Currently, lithium-iodine cells are commonly used to power pacemakers and have replaced zinc-mercury cells. Table 1 provides the operating
cell potential, E, for each cell. Table 2 provides the standard reduction potentials for several half-reactions related to zinc-mercury and zinc-air cells.
The use of zinc-mercury cells in hearing aids has been replaced by zinc-air cells that operate using the oxidation of Zn by O, from the air, generating a potential of +1.60 V. Table 2 provides the standard
reduction potentials for the half-reactions used in zinc-mercury and zinc-air cells. Which of the following best explains the modification to the cell design that is mostly responsible for the difference in standard
cell potentials for zinc-mercury and zinc-air cells?
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically more favorable reduction of O, compared to
HgO.
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the greater number of moles of e required to reduce O, compared to
HgO.
The greater standard cell potential of the Zn-air cell compared to that of the zinc-mercury cell most likely results from the thermodynamically less favorable reduction of O, compared to
HgO.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY