A uniform spherical shell of mass M = 3.5 kg and radius R = 18.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 3.00×10-3 kg m2 and radius r = 5.0 cm, and its attached to a small object of mass m = 1.0 kg. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h = 1.3 m from rest: Use work - energy considerations.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

A uniform spherical shell of mass M = 3.5 kg and radius R = 18.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 3.00×10-3 kg m2 and radius r = 5.0 cm, and its attached to a small object of mass m = 1.0 kg. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h = 1.3 m from rest: Use work - energy considerations.

Main Menu
Contents
Grades
Course Contents » ... » HW 12 » A uniform spherical shell of mass M
Timer
Notes
Evaluate
Feedback
Print
Info
М, R
I, 1
(hrw8c10p66) A uniform spherical shell of mass M = 3.5 kg and radius R = 18.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator
of the shell, over a pulley of rotational inertia I = 3.00x10-3 kg m2 and radius r = 5.0 cm, and its attached to a small object of mass m = 1.0 kg. There is no friction on the pulley's axle; the cord
does not slip on the pulley. What is the speed of the object after it has fallen a distance h = 1.3 m from rest: Use work - energy considerations.
Submit Answer Tries 0/15
This discussion is closed.
Send Feedback
Transcribed Image Text:Main Menu Contents Grades Course Contents » ... » HW 12 » A uniform spherical shell of mass M Timer Notes Evaluate Feedback Print Info М, R I, 1 (hrw8c10p66) A uniform spherical shell of mass M = 3.5 kg and radius R = 18.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 3.00x10-3 kg m2 and radius r = 5.0 cm, and its attached to a small object of mass m = 1.0 kg. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h = 1.3 m from rest: Use work - energy considerations. Submit Answer Tries 0/15 This discussion is closed. Send Feedback
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON