A uniform ladder with mass m₂ and length L rests against a smooth wall. (Figure 1)A do-it-yourself enthusiast of mass mi stands on the ladder a distance d from the bottom (measured along the ladder). The ladder makes an angle with the ground. There is no friction between the wall and the ladder, but there is a frictional force of magnitude f between the floor and the ladder. N₁ is the magnitude of the normal force exerted by the wall on the ladder, and N₂ is the magnitude of the normal force exerted by the ground on the ladder. Throughout the problem, consider counterclockwise torques to be positive. None of your answers should involve * (i.e.. simplify your trig functions). What is the minimum coeffecient of static friction min required between the ladder and the ground so that the ladder does not slip? Express Amin in terms of m₁, m2, d, L, and 0. ▸ View Available Hint(s) Ο ΑΣΦ w ? Figure m2 {m₁ Hain= Submit Previous Answers * Incorrect; Try Again; 7 attempts remaining Part B 1 of 1 Suppose that the actual coefficent of friction is one and a half times as large as the value of μmin. That is, μs = (3/2)μmin. Under these circumstances, what is the magnitude of the force of friction f that the floor applies to the ladder? Express your answer in terms of m1, m2, d, L, 9, and 0. Remember to pay attention to the relation of force and μls. ▸ View Available Hint(s) L f= Submit Provide Feedback Ο ΑΣΦ ?
A uniform ladder with mass m₂ and length L rests against a smooth wall. (Figure 1)A do-it-yourself enthusiast of mass mi stands on the ladder a distance d from the bottom (measured along the ladder). The ladder makes an angle with the ground. There is no friction between the wall and the ladder, but there is a frictional force of magnitude f between the floor and the ladder. N₁ is the magnitude of the normal force exerted by the wall on the ladder, and N₂ is the magnitude of the normal force exerted by the ground on the ladder. Throughout the problem, consider counterclockwise torques to be positive. None of your answers should involve * (i.e.. simplify your trig functions). What is the minimum coeffecient of static friction min required between the ladder and the ground so that the ladder does not slip? Express Amin in terms of m₁, m2, d, L, and 0. ▸ View Available Hint(s) Ο ΑΣΦ w ? Figure m2 {m₁ Hain= Submit Previous Answers * Incorrect; Try Again; 7 attempts remaining Part B 1 of 1 Suppose that the actual coefficent of friction is one and a half times as large as the value of μmin. That is, μs = (3/2)μmin. Under these circumstances, what is the magnitude of the force of friction f that the floor applies to the ladder? Express your answer in terms of m1, m2, d, L, 9, and 0. Remember to pay attention to the relation of force and μls. ▸ View Available Hint(s) L f= Submit Provide Feedback Ο ΑΣΦ ?
Glencoe Physics: Principles and Problems, Student Edition
1st Edition
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Paul W. Zitzewitz
Chapter5: Displacement And Force In Two Dimensions
Section: Chapter Questions
Problem 82A
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill