A uniform horizontal beam 5.00 m long and weighting 3.03 102 N is attached to a wall by a pin connection that allows the beam to rotate. Its far end is supported by a cable that makes an angle of 53.0° with the horizontal (Figure (a)). If a person weighing 6.05 102 N stands 1.60 m from the wall, find the magnitude of the tension in the cable and the force exerted by the wall on the beam. T = N Rx = N Ry = N
Rotational Equilibrium And Rotational Dynamics
In physics, the state of balance between the forces and the dynamics of motion is called the equilibrium state. The balance between various forces acting on a system in a rotational motion is called rotational equilibrium or rotational dynamics.
Equilibrium of Forces
The tension created on one body during push or pull is known as force.
A uniform horizontal beam 5.00 m long and weighting 3.03 102 N is attached to a wall by a pin connection that allows the beam to rotate. Its far end is supported by a cable that makes an angle of 53.0° with the horizontal (Figure (a)). If a person weighing 6.05 102 N stands 1.60 m from the wall, find the magnitude of the tension in the cable and the force exerted by the wall on the beam.
T | = N |
Rx | = N |
Ry | = N |
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 8 images