A U-groove weld is used to butt weld 2 pieces of 7.0-mm-thick titanium plate. The U- groove is prepared using a milling cutter so the radius of the groove is 3.0 mm. During welding, the penetration of the weld causes an additional 1.5 mm of material to be melted. The final cross-sectional area of the weld can be approximated by a semicircle with a radius of 4.5 mm. The length of the weld is 200 mm. The melting factor of the setup is 0.57 and the heat transfer factor is 0.86. Tm for titanium is 2070°K (a) What is the quantity of heat (in Joules) required to melt the volume of metal in this weld (filler metal plus base metal)? Assume the resulting top surface of the weld bead is flush with the top surface of the plates. (b) What is the required heat generated at the welding source?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A U-groove weld is used to butt weld 2 pieces of 7.0-mm-thick titanium plate. The U-
groove is prepared using a milling cutter so the radius of the groove is 3.0 mm. During
welding, the penetration of the weld causes an additional 1.5 mm of material to be
melted. The final cross-sectional area of the weld can be approximated by a semicircle
with a radius of 4.5 mm. The length of the weld is 200 mm. The melting factor of the
setup is 0.57 and the heat transfer factor is 0.86. Tm for titanium is 2070°K (a) What is
the quantity of heat (in Joules) required to melt the volume of metal in this weld (filler
metal plus base metal)? Assume the resulting top surface of the weld bead is flush with
the top surface of the plates. (b) What is the required heat generated at the welding
source?
Transcribed Image Text:A U-groove weld is used to butt weld 2 pieces of 7.0-mm-thick titanium plate. The U- groove is prepared using a milling cutter so the radius of the groove is 3.0 mm. During welding, the penetration of the weld causes an additional 1.5 mm of material to be melted. The final cross-sectional area of the weld can be approximated by a semicircle with a radius of 4.5 mm. The length of the weld is 200 mm. The melting factor of the setup is 0.57 and the heat transfer factor is 0.86. Tm for titanium is 2070°K (a) What is the quantity of heat (in Joules) required to melt the volume of metal in this weld (filler metal plus base metal)? Assume the resulting top surface of the weld bead is flush with the top surface of the plates. (b) What is the required heat generated at the welding source?
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Design of Permanent Joints
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY