a) у 3 f(-x) Domain: Submit Answer Incorrect. Tries 3/99 Previous Tries Range: Submit Answer Tries 0/99 b) у %3D —f(3x) Domain: 國 Submit Answer Incorrect. Tries 1/99 Previous Tries Range:

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Topic Video
Question

Note: These problems are NOT for a grade. 

### Transformations of Functions

#### a) \( y = \frac{1}{2} f(-x) \)

- **Domain:**
  - _Input Box for Domain with Feedback:_
    - Incorrect. Tries 3/99 [Previous Tries]

- **Range:**
  - _Input Box for Range with Feedback:_
    - Tries 0/99

#### b) \( y = -f(3x) \)

- **Domain:**
  - _Input Box for Domain with Feedback:_
    - Incorrect. Tries 1/99 [Previous Tries]

- **Range:**
  - _Input Box for Range with Feedback:_
    - Tries 0/99

---

This page provides fields for inputting the domain and range of transformed functions and tracks the number of attempts students have made. If a submission is incorrect, feedback is provided, allowing students to revise their answers accordingly.
Transcribed Image Text:### Transformations of Functions #### a) \( y = \frac{1}{2} f(-x) \) - **Domain:** - _Input Box for Domain with Feedback:_ - Incorrect. Tries 3/99 [Previous Tries] - **Range:** - _Input Box for Range with Feedback:_ - Tries 0/99 #### b) \( y = -f(3x) \) - **Domain:** - _Input Box for Domain with Feedback:_ - Incorrect. Tries 1/99 [Previous Tries] - **Range:** - _Input Box for Range with Feedback:_ - Tries 0/99 --- This page provides fields for inputting the domain and range of transformed functions and tracks the number of attempts students have made. If a submission is incorrect, feedback is provided, allowing students to revise their answers accordingly.
Let \( y = f(x) \) be a function with domain \( D = [0, \infty) \) and range \( R = (-\infty, 0] \). Find the domain \( D \) and range \( R \) for the following functions and enter your answers using interval notation. Be sure your intervals are in the correct order, and enter exact answers only (no approximations).
Transcribed Image Text:Let \( y = f(x) \) be a function with domain \( D = [0, \infty) \) and range \( R = (-\infty, 0] \). Find the domain \( D \) and range \( R \) for the following functions and enter your answers using interval notation. Be sure your intervals are in the correct order, and enter exact answers only (no approximations).
Expert Solution
Step 1

Consider the domain and range for the function f(x).

For fx, D=0,R=,0

(a)

First, calculate the domain and range for the function y=f(-x) from the function y=f(x).

The function y=f(-x) is obtained from y=f(x) by taking the mirror image about y - axis. So, y=f(x) is defined for positive values for x. After the mirror image about y-axis y=f(-x) is defined for negative values for x.

The range for y=f(-x) remains same as for y=f(x).

For y=f(-x), D=(-,0]R=(-,0]

Now, calculate the domain and range for the function y=12f(-x) from the function y=f(-x).

The range remains same for y=12f(-x) and y=f(-x) as a constant 1/2 is multiplied to y=f(-x).

Also, the range remains the same for y=12f(-x) and y=f(-x) as a constant 1/2 is multiplied to y=f(-x).

Hence, for y=12f(-x), D=(-,0]R=(-,0]

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Propositional Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education