Problem 3. Let V, W be vector spaces over F, and let U be a subspace of V. Suppose SE L(U, W) is such that S 0. Define T: V → W by Prove that T is not linear. T(v) = JSv 10 if v EU, if v EV and v U.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem 3.** Let \( V, W \) be vector spaces over a field \( \mathbb{F} \), and let \( U \) be a subspace of \( V \). Suppose \( S \in \mathcal{L}(U,W) \) is such that \( S \neq 0 \). Define \( T: V \rightarrow W \) by

\[
T(v) = 
\begin{cases} 
Sv & \text{if } v \in U, \\
0 & \text{if } v \in V \text{ and } v \notin U.
\end{cases}
\]

Prove that \( T \) is not linear.

---

**Problem 4.** Let \( V, W \) be vector spaces over \( \mathbb{F} \), and let \( U \) be a subspace of \( V \). Suppose \( S \in \mathcal{L}(U,W) \). Prove that there exists a linear map \( T \in \mathcal{L}(V,W) \) that extends \( S \), that is,

\[ 
Tv = Sv \quad \text{for all } v \in U.
\]
Transcribed Image Text:**Problem 3.** Let \( V, W \) be vector spaces over a field \( \mathbb{F} \), and let \( U \) be a subspace of \( V \). Suppose \( S \in \mathcal{L}(U,W) \) is such that \( S \neq 0 \). Define \( T: V \rightarrow W \) by \[ T(v) = \begin{cases} Sv & \text{if } v \in U, \\ 0 & \text{if } v \in V \text{ and } v \notin U. \end{cases} \] Prove that \( T \) is not linear. --- **Problem 4.** Let \( V, W \) be vector spaces over \( \mathbb{F} \), and let \( U \) be a subspace of \( V \). Suppose \( S \in \mathcal{L}(U,W) \). Prove that there exists a linear map \( T \in \mathcal{L}(V,W) \) that extends \( S \), that is, \[ Tv = Sv \quad \text{for all } v \in U. \]
In the problems below, F denotes ℝ or ℂ.
Transcribed Image Text:In the problems below, F denotes ℝ or ℂ.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,