Problem 3. Let V, W be vector spaces over F, and let U be a subspace of V. Suppose SE L(U, W) is such that S 0. Define T: V → W by Prove that T is not linear. T(v) = JSv 10 if v EU, if v EV and v U.
Problem 3. Let V, W be vector spaces over F, and let U be a subspace of V. Suppose SE L(U, W) is such that S 0. Define T: V → W by Prove that T is not linear. T(v) = JSv 10 if v EU, if v EV and v U.
Holt Mcdougal Larson Pre-algebra: Student Edition 2012
1st Edition
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Chapter4: Factors, Fractions, And Exponents
Section4.6: Negative And Zero Exponents
Problem 2E
Related questions
Question
![**Problem 3.** Let \( V, W \) be vector spaces over a field \( \mathbb{F} \), and let \( U \) be a subspace of \( V \). Suppose \( S \in \mathcal{L}(U,W) \) is such that \( S \neq 0 \). Define \( T: V \rightarrow W \) by
\[
T(v) =
\begin{cases}
Sv & \text{if } v \in U, \\
0 & \text{if } v \in V \text{ and } v \notin U.
\end{cases}
\]
Prove that \( T \) is not linear.
---
**Problem 4.** Let \( V, W \) be vector spaces over \( \mathbb{F} \), and let \( U \) be a subspace of \( V \). Suppose \( S \in \mathcal{L}(U,W) \). Prove that there exists a linear map \( T \in \mathcal{L}(V,W) \) that extends \( S \), that is,
\[
Tv = Sv \quad \text{for all } v \in U.
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fac744b86-fb77-4dc8-9b17-1f74c21e67b7%2F11340418-b030-4ced-b9d0-2bebf602bc82%2F6u8uyj6_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem 3.** Let \( V, W \) be vector spaces over a field \( \mathbb{F} \), and let \( U \) be a subspace of \( V \). Suppose \( S \in \mathcal{L}(U,W) \) is such that \( S \neq 0 \). Define \( T: V \rightarrow W \) by
\[
T(v) =
\begin{cases}
Sv & \text{if } v \in U, \\
0 & \text{if } v \in V \text{ and } v \notin U.
\end{cases}
\]
Prove that \( T \) is not linear.
---
**Problem 4.** Let \( V, W \) be vector spaces over \( \mathbb{F} \), and let \( U \) be a subspace of \( V \). Suppose \( S \in \mathcal{L}(U,W) \). Prove that there exists a linear map \( T \in \mathcal{L}(V,W) \) that extends \( S \), that is,
\[
Tv = Sv \quad \text{for all } v \in U.
\]

Transcribed Image Text:In the problems below, F denotes ℝ or ℂ.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images

Recommended textbooks for you

Holt Mcdougal Larson Pre-algebra: Student Edition…
Algebra
ISBN:
9780547587776
Author:
HOLT MCDOUGAL
Publisher:
HOLT MCDOUGAL

Algebra for College Students
Algebra
ISBN:
9781285195780
Author:
Jerome E. Kaufmann, Karen L. Schwitters
Publisher:
Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell

Holt Mcdougal Larson Pre-algebra: Student Edition…
Algebra
ISBN:
9780547587776
Author:
HOLT MCDOUGAL
Publisher:
HOLT MCDOUGAL

Algebra for College Students
Algebra
ISBN:
9781285195780
Author:
Jerome E. Kaufmann, Karen L. Schwitters
Publisher:
Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage